IDE Support for Lexical
Effects and Handlers

Bachelor’s Thesis Presentation

Tim Neumann
Student at Faculty of Science

Eberhard Karls Universitdt Tiibingen

February 16, 2022



Overview

1. Effects and Handlers

2. Research on Language Support in IDEs

3. Proposals on IDE Support for Effects and Handlers
4. Conclusion

5. Bibliography



Effects and Handlers



Effects and Handlers

Published: February 2003

Algebraic Operations and Generic Effects

Gordon Plotkin & John Power

Applied Categorical Structures 11, 69-94 (2003) | Cite this article

411 Accesses | 138 Citations | Metrics

Abstract

Given a complete and cocomplete symmetric monoidal closed category V and a symmetric
monoidal V-category C with cotensors and a strong V-monad T on C, we investigate axioms
under which an Ob C-indexed family of operations of the form a . :(Tx)"—(Tx)* provides
semantics for algebraic operations on the computational A-calculus. We recall a definition for
which we have elsewhere given adequacy results, and we show that an enrichment of it is
equivalent to a range of other possible natural definitions of algebraic operation. In particular,
we define the notion of generic effect and show that to give a generic effect is equivalent to
giving an algebraic operation. We further show how the usual monadic semantics of the
computational A-calculus extends uniformly to incorporate generic effects. We outline
examples and non-examples and we show that our definition also enriches one for call-by-

name languages with effects.

[Plotkin and Power, 2003]




Effects and Handlers

Describing an effect

effect Logging {
def logResult[A](s: A) : A
def logMessage(s: String) : String

}

Example code will be in the Effekt
language



Effects and Handlers

Utilising effect operations

def add(a: Int, b: Int) : Int / { Logging } =
{

val result = a + b;

logMessage(result.show);
result;




Effects and Handlers

Effect handlers

def main() : Int / { Logging } = {
add(23, 42)
}




Effects and Handlers

Effect handlers

def main() : Int / { Logging } = {
add(23, 42)
}

REPL> main()
[error] Main cannot have user defined effects, but includes

effects: Logging



Effects and Handlers

How to implement the functionality of Logging?




Effects and Handlers

European Symposium on Programming

ESOP 2009: Programming Languages and Systems pp 80-94 | Cite as

Handlers of Algebraic Effects

Authors Authors and affiliations

Gordon Plotkin, Matija Pretnar

Conference paper
= 73 1.4k

Citations Downloads

Part of the Lecture Notes in Computer Science boak series (LNCS, volume 5502)

Abstract

We present an algebraic treatment of exception handlers and, more generally, introduce
handlers for other computational effects representable by an algebraic theory. These include
nondeterminism, interactive input/output, concurrency, state, time, and their combinations; in
all cases the computation monad is the free-model monad of the theory. Each such handler
corresponds to a model of the theory for the effects at hand. The handling construct, which
applies a handler to a computation, is based on the one introduced by Benton and Kennedy,
and is interpreted using the homomorphism induced by the universal property of the free
model. This general construct can be used to describe previously unrelated concepts from both

theory and practice.

[Plotkin and Pretnar, 2009]

10



Effects and Handlers

Exception handlers

try {
something( )

} catch(Exception e) {

System.out.println("Uh oh...")
}

11



Effects and Handlers

Effect handlers

def main() : Int / { Logging } = {

add(23, 42)

12



Effects and Handlers

Effect handlers

def main() : Int / { Logging } = {
try {
add(23, 42)
} with Logging {

13



Effects and Handlers

Effect handlers

def main() : Int / { Logging } = {
try {
add(23, 42)
} with Logging {
def logMessage(s) = {
println("Log message: " ++ s);
resume(s);

14



Effects and Handlers

Effect handlers

def main() : Int / {} = {
try {
add(23, 42)
} with Logging {
def logMessage(s) = {
println("Log message: " ++ s);
resume(s);
}
def logResult(s) = resume(s)
I ¢
}

- J
15




IDE Support for Lexical Effects and
Handlers




Research on Language Support in IDEs

Novel IDE Features

17



Research on Language Support in IDEs

Novel IDE Features

/ Impact of IDE Features

18



Research on Language Support in IDEs

Novel IDE Features

/ Impact of IDE Features

7

Novice /

Programmers

19



Research on Language Support in IDEs

Novel IDE Features

Novice

Programmers

Impact of IDE Features

Effects and Handlers

20



Research on Language Support in IDEs

Novel IDE Features Impact of IDE Features

Effects and Handlers

Novice

Programmers

21



IDE Support for Effects and Handlers

Proposed features



Implemented Features

import SomeModule/Functions

def main() = {
someFunction("foo")

}

23



Implemented Features

import SomeModule/Functions

def main() : String / { Logging } = {
someFunction("foo")

}

24



Demo



“the effect of static type systems is larger than often assumed, at least

in comparison to code completion®.

"Using types helps improve readability" of source code.



Implemented Features

Where does the Error effect come from?

def ex() : Int / { Fail, Next, Error, Flip } = {

or {
accept("do");
commit {
accept("foo");
0;
}
b A

accept("do");
accept("bar");
1

27



Demo



Similarity to jump-to-definition and find-usage.

Navigation in code: considered a frequently occurring aspect of

programming, seen as an important skill of a programmer.



Implemented Features

Handle the Error effect

def ex() : Int / { Fail, Next, Error, Flip } = {

or {
accept("do");
commit {
accept("foo");
0;
}
b A

accept("do");
accept("bar");
1

30



Demo



Similar to other code generating utilities:

auto-completion, refactoring tools, code snippet insertion.

Lack of syntactical knowledge and coding errors: source of frustration

among programmers.



Outlined Features

What is storelnCloud?

import Abstractions/Storage

def main() = {
storeInCloud("foo")
}

- J

33



Outlined Features

What is storelnCloud?

import Abstractions/Storage

def main() = {
storeInCloud("foo")
}

\_ J

An effect operation!

import Abstractions/Storage

def main() : Int / { Storage } = {
(Storage => Storage.storeInCloud("foo"))
}

- J




Outlined Features

What code requires the Logging effect?

def main() = {
try {
foo(42);
bar(23){
p => baz(p)
}

} with Logging {

def logMessage(s) = resume(s)
} with Error {

def fail() = logMessage("Aborting!")
}

35



Outlined Features

foo and baz require the Logging effect

def main() = {

try {
foo(42)(Logging, Error);
bar(23)(Error){
} p => baz(p)(Logging)

} with Logging {

def logMessage(s) = resume(s)
} with Error {

def fail() = logMessage("Aborting!")
}

36



Secondary information in source code?

Code comments since 1960s.

Natural language embedded in code:

source of misinterpretation.



Outlined Features

How would one utilise these effects?

effect Logging {
def logString(s: String) : String
}

effect State {
def get() : Int
def put(n : Int) : Unit

}

effect Magic {
def wizard() : rabbit
def hat(r: rabbit) : Unit

38



Outlined Features

What is the Magic effect?

effect Magic {
def wizard() : rabbit
def hat(r: rabbit) : Unit

39



Outlined Features

-

An IDE could list available handler implementations

40




Outlined Features

It’s just an analogy to the State effect

def magicShow { prog: Unit / Magic } = {
var s = rabbit(0);

try {
prog( )

} with Magic {
def wizard() =
def hat(r) = {

S = r;
resume(())

resume(s)

}

41



Exemplary code:

considered helpful during programming

Reading / understanding of foreign source code:

crucial aspect of software development



Outlined Features

You finished developing a library

effect logging {
def logResult[A](s: A) : A
}

effect async {
def fetch(s: String) : String
}

def add(a: Int, b: Int) = {
val res = a + b;
logResult(res)

}

def someLibraryFunction() = {
try {
add(23, 42)
} with logging {
def logResult(s) = {
println("Logging result: " ++ s.show);
resume(s);
}
%
}

- J




Outlined Features

You finished developing a library

effect logging {
def logResult[A](s: A) : A
}

effect async {
def fetch(s: String) : String
}

def add(a: Int, b: Int) = {
val res = a + b;
logResult(res)

}

def someLibraryFunction() = {
try {
add(23, 42)
} with logging {
def logResult(s) = {
println("Logging result: " ++ s.show);
resume(s);
}
%
}

- J

But you were lazy:

No function is

explicitly typed.

44



Outlined Features

Make types & effects
explicit

- Per function
-  Perfile
- Per project

-

You finished developing a library

effect logging {
def logResult[A](s: A) : A
}

effect async {
def fetch(s: String) : String
}

def add(a: Int, b: Int) : Int / logging = {
val res = a + b;
logResult(res)

}

def someLibraryFunction() : Int / Console = {
try {
add(23, 42)
} with logging {
def logResult(s) = {
println("Logging result: " ++ s.show);
resume(s);
}
I
}

45




Dynamic and static typing both offer benefits.

They may co-exist in programming languages.

Metals! language server for Scala:

“insert type annotation” adds explicit typing to implicitly typed

expression.



Conclusion

 Effects and handlers allow for novel IDE features

* These features could help in reasoning about and programming

with effects and handlers

 Further research is needed to estimate the usefulness of

presented features



Thank you!



References

[Beelders and du Plessis, 2016] Beelders, T. and du Plessis, J.-P. (2016). The influence of syntax highlighting on scanning and reading behaviour for source code. In Proceedings of the Annual Conference of the South African
Institute of Computer Scientists and Information Technologists, pages 1-10.

[Brachthauser et al., 2020] Brachthauser, J. I., Schuster, P., and Ostermann, K.(2020). Effekt: Lightweight effect polymorphism for handlers. Technical report, Technical Report. University of Tubingen, Germany.

[Busjahn et al., 2014] Busjahn, T., Bednarik, R., and Schulte, C. (2014). What in-fluences dwell time during source code reading? analysis of element type and frequency as factors. In Proceedings of the Symposium on Eye

Tracking Research and Applications, pages 335-338.
[Busjahn and Schulte, 2013] Busjahn, T. and Schulte, C. (2013). The use of code reading in teaching programming. In Proceedings of the 13th Koli Calling international conference on computing education research, pages 3-11.

[Dillon et al., 2012] Dillon, E., Anderson, M., and Brown, M. (2012). Comparing feature assistance between programming environments and their" effect" on novice programmers. Journal of Computing Sciences in Colleges,
27(5):69-77.

[Fan et al., 2019] Fan, H., Li, K., Li, X., Song, T., Zhang, W., Shi, Y., and Du, B.(2019). Covscode: A novel real-time collaborative programming environment for lightweight ide. Applied Sciences, 9(21).

[Fischer and Hanenberg, 2015] Fischer, L. and Hanenberg, S. (2015). An empirical investigation of the effects of type systems and code completion on api usability using typescript and javascript in ms visual studio. ACM
SIGPLAN Notices,51(2):154-167.

[Ford and Parnin, 2015]Ford, D. and Parnin, C. (2015). Exploring causes of frustration for software developers. In2015 IEEE/ACM 8th International Workshop on Cooperative and Human Aspects of Software Engineering, pages
115-116. IEEE.

[Hannebauer et al., 2018] Hannebauer, C., Hesenius, M., and Gruhn, V. (2018). Does syntax highlighting help programming novices? Empirical Software Engineering,23(5):2795-2828.
[Jones and Burnett, 2007]Jones, S. J. and Burnett, G. E. (2007). Spatial skills and navigation of source code.ACM SIGCSE Bulletin, 39(3):231-235.
[Kelleher and Pausch, 2005] Kelleher, C. and Pausch, R. (2005). Lowering the barriers to programming: A taxonomy of programming environments and languages for novice programmers. ACM Comput. Surv., 37(2):83-137.

[Mader and Egyed, 2011]Mader, P. and Egyed, A. (2011). Do software engineers benefit from source code navigation with traceability? — an experiment in software change management. In Proceedings of the 2011 26th
IEEE/ACM International Conference on Automated Software Engineering, ASE '11, page 444-447, USA. IEEE Computer Society.

[Meijer and Drayton, 2004] Meijer, E. and Drayton, P. (2004). Static typing wherepossible, dynamic typing when needed: The end of the cold war between programming languages. Citeseer.

49



References

[Meyerovich and Rabkin, 2013] Meyerovich, L. A. and Rabkin, A. S. (2013). Empiri-cal analysis of programming language adoption. SIGPLAN Not., 48(10):1-18.
[Murphy et al., 2006]Murphy, G. C., Kersten, M., and Findlater, L. (2006). How are java software developers using the elipse ide? IEEE software, 23(4):76-83.

[Nasehi et al., 2012] Nasehi, S. M., Sillito, J., Maurer, F., and Burns, C. (2012). What makes a good code example?: A study of programming g&a in stackoverflow.In2012 28th IEEE International Conference on Software
Maintenance (ICSM), pages25-34. IEEE.

[Plotkin and Power, 2003] Plotkin, G. and Power, J. (2003).Algebraic operations and generic effects. Applied categorical structures, 11(1):69-94.

[Plotkin and Pretnar, 2009] Plotkin, G. and Pretnar, M. (2009).Handlers of algebraic effects. In European Symposium on Programming, pages 80-94. Springer

[Rask et al., 2021]Rask, J. K., Madsen, F. P., Battle, N., Macedo, H. D., and Larsen,P. G. (2021). Visual studio code vdm support. John Fitzgerald, Tomohiro Oda, and Hugo Daniel Macedo (Editors), page 35.

[Raymond, 1991]Raymond, D. R. (1991). Reading source code. In Proceedings of the1991 conference of the Centre for Advanced Studies on Collaborative research, pages3-16.

[Robbes and Lanza, 2008] Robbes, R. and Lanza, M. (2008). How program history can improve code completion. In2008 23rd IEEE/ACM International Conference on Automated Software Engineering, pages 317-326. IEEE.

[Rodrigo and Baker, 2009]Rodrigo, M. M. T. and Baker, R. S. (2009). Coarse-grained detection of student frustration in an introductory programming course. In Proceedings of the fifth international workshop on Computing

education research workshop, pages 75-80.
[Sammet, 1978] Sammet, J. E. (1978). The early history of cobol. In History of Programming Languages, pages 199-243.
[Sarkar, 2015] Sarkar, A. (2015). The impact of syntax colouring on program com-prehension. In PPIG, page 8.

[Svyatkovskiy et al., 2019] Svyatkovskiy, A., Zhao, Y., Fu, S., and Sundaresan, N.(2019). Pythia: Ai-assisted code completion system. In Proceedings of the 25th ACMSIGKDD International Conference on Knowledge Discovery
amp; Data Mining, KDD’19, page 2727-2735, New York, NY, USA. Association for Computing Machinery.

[Van De Vanter, 2002] Van De Vanter, M. L. (2002). The documentary structure of source code. Information and Software Technology, 44(13):767—782. Special Issue onSource Code Analysis and Manipulation (SCAM)

[Zagalsky et al., 2012] Zagalsky, A., Barzilay, O., and Yehudai, A. (2012). Example overflow: Using social media for code recommendation. In2012 Third International Workshop on Recommendation Systems for Software
Engineering (RSSE), pages 38-42.IEEE.

50



