
IDE Support for Lexical
Effects and Handlers

Bachelor‘s Thesis Presentation

Tim Neumann

Student at Faculty of Science

Eberhard Karls Universität Tübingen

February 16, 2022

1



Overview

1. Effects and Handlers

2. Research on Language Support in IDEs

3. Proposals on IDE Support for Effects and Handlers

4. Conclusion

5. Bibliography

2



Effects and Handlers

3



Effects and Handlers

4

[Plotkin and Power, 2003]



Effects and Handlers

5

effect Logging {
def logResult[A](s: A) : A
def logMessage(s: String) : String

}

Describing an effect

Example code will be in the Effekt 
language [Brachthäuser et al., 2020]



Effects and Handlers

6

def add(a: Int, b: Int) : Int / { Logging } = 
{

val result = a + b;
logMessage(result.show);
result;

}

Utilising effect operations



Effects and Handlers

7

def main() : Int / { Logging } = {
add(23, 42)

}

Effect handlers



Effects and Handlers

8

def main() : Int / { Logging } = {
add(23, 42)

}

Effect handlers

REPL> main()
[error] Main cannot have user defined effects, but includes
effects: Logging

Missing implementation



Effects and Handlers

9

def main() : Int / { Logging } = {
add(23, 42)

}

Effect handlers

How to implement the functionality of Logging?



Effects and Handlers

10

[Plotkin and Pretnar, 2009]



Effects and Handlers

11

try {
something()

} catch(Exception e) {
System.out.println("Uh oh...")

}

Exception handlers



Effects and Handlers

12

def main() : Int / { Logging } = {

add(23, 42)

}

Effect handlers



Effects and Handlers

13

def main() : Int / { Logging } = {
try {
add(23, 42)

} with Logging {

};
}

Effect handlers



Effects and Handlers

14

def main() : Int / { Logging } = {
try {
add(23, 42)

} with Logging {
def logMessage(s) = {
println("Log message: " ++ s);
resume(s);

}

};
}

Effect handlers



Effects and Handlers

15

def main() : Int / {} = {
try {
add(23, 42)

} with Logging {
def logMessage(s) = {
println("Log message: " ++ s);
resume(s);

}
def logResult(s) = resume(s)

};
}

Effect handlers



16

IDE Support for Lexical Effects and 
Handlers



Research on Language Support in IDEs

17

Novel IDE Features

[Fan et al., 2019, 
Svyatkovskiy et al., 2019, 
Rask et al.,2021]



Research on Language Support in IDEs

18

Novel IDE Features Impact of IDE Features

[Sarkar, 2015, Beelders 
and du Plessis, 2016b, 
Hannebauer et al., 2018]



Research on Language Support in IDEs

19

Novel IDE Features

Novice

Programmers

Impact of IDE Features

[Dillon et al., 2012, 
Kelleher and Pausch, 
2005]



Research on Language Support in IDEs

20

Novel IDE Features

Effects and HandlersNovice

Programmers

Impact of IDE Features



Research on Language Support in IDEs

21

Novel IDE Features

Novice

Programmers

Impact of IDE Features

Effects and Handlers



22

IDE Support for Effects and Handlers
-

Proposed features



Implemented Features

23

What we see

import SomeModule/Functions

def main() = {
someFunction("foo")

}



Implemented Features

24

What we get

import SomeModule/Functions

def main() : String / { Logging } = {
someFunction("foo")

}



25

Demo
ba_1.effekt



26

“the effect of static type systems is larger than often assumed, at least 

in comparison to code completion“.

[Fischer and Hanenberg, 2015]

"Using types helps improve readability" of source code.

[Meyerovich and Rabkin, 2013]



Implemented Features

27

Where does the Error effect come from?

def ex() : Int / { Fail, Next, Error, Flip } = {
or {

accept("do");
commit {

accept("foo");
0;

}
} {

accept("do");
accept("bar");
1

}
}



28

Demo
ba_2.effekt



29

Similarity to jump-to-definition and find-usage.

Navigation in code: considered a frequently occurring aspect of 

programming, seen as an important skill of a programmer.

[Murphy et al., 2006, Jones and Burnett, 2007, Mader and Egyed, 2011]



Implemented Features

30

Handle the Error effect

def ex() : Int / { Fail, Next, Error, Flip } = {
or {

accept("do");
commit {

accept("foo");
0;

}
} {

accept("do");
accept("bar");
1

}
}



31

Demo
ba_3.effekt



32

Similar to other code generating utilities:

auto-completion, refactoring tools, code snippet insertion.

[Murphy et al., 2006, Robbes and Lanza, 2008]

Lack of syntactical knowledge and coding errors: source of frustration 

among programmers.

[Rodrigo and Baker, 2009, Ford and Parnin, 2015]



Outlined Features

33

What is storeInCloud? 

import Abstractions/Storage

def main() = {
storeInCloud("foo")

}



Outlined Features

34

What is storeInCloud? 

import Abstractions/Storage

def main() = {
storeInCloud("foo")

}

import Abstractions/Storage

def main() : Int / { Storage } = {
(Storage => Storage.storeInCloud("foo"))

}

An effect operation!



Outlined Features

35

What code requires the Logging effect?

def main() = {
try {

foo(42);
bar(23){

p => baz(p)
}

} with Logging {
def logMessage(s) = resume(s)

} with Error {
def fail() = logMessage("Aborting!")

}
}



Outlined Features

36

foo and baz require the Logging effect

def main() = {
try {

foo(42)(Logging, Error);
bar(23)(Error){

p => baz(p)(Logging)
}

} with Logging {
def logMessage(s) = resume(s)

} with Error {
def fail() = logMessage("Aborting!")

}
}



37

Secondary information in source code?

Code comments since 1960s.

[Sammet, 1978]

Natural language embedded in code:

source of misinterpretation.

[Van De Vanter, 2002]



Outlined Features

38

How would one utilise these effects?

effect Logging {
def logString(s: String) : String

}

effect State {
def get() : Int
def put(n : Int) : Unit

}

effect Magic {
def wizard() : rabbit
def hat(r: rabbit) : Unit

}



Outlined Features

39

What is the Magic effect?

effect Magic {
def wizard() : rabbit
def hat(r: rabbit) : Unit

}



Outlined Features

40

What is the Magic effect?

effect Magic {
def wizard() : rabbit
def hat(r: rabbit) : Unit

}

An IDE could list available handler implementations



Outlined Features

41

def magicShow { prog: Unit / Magic } = {
var s = rabbit(0);
try {

prog()
} with Magic {

def wizard() = resume(s)
def hat(r) = {

s = r;
resume(())

}
}
s

}

It‘s just an analogy to the State effect



42

Exemplary code:

considered helpful during programming

[Zagalsky et al.,2012, Nasehi et al., 2012]

Reading / understanding of foreign source code:

crucial aspect of software development

[Raymond, 1991, Busjahn and Schulte, 2013, Busjahn et al., 2014]



Outlined Features

43

You finished developing a library

effect logging {
def logResult[A](s: A) : A

}

effect async {
def fetch(s: String) : String

}

def add(a: Int, b: Int) = {
val res = a + b;
logResult(res)

}

def someLibraryFunction() = {
try {

add(23, 42)
} with logging {

def logResult(s) = {
println("Logging result: " ++ s.show);
resume(s);

}
};

}



Outlined Features

44

But you were lazy:

No function is

explicitly typed.

You finished developing a library

effect logging {
def logResult[A](s: A) : A

}

effect async {
def fetch(s: String) : String

}

def add(a: Int, b: Int) = {
val res = a + b;
logResult(res)

}

def someLibraryFunction() = {
try {

add(23, 42)
} with logging {

def logResult(s) = {
println("Logging result: " ++ s.show);
resume(s);

}
};

}



Outlined Features

45

You finished developing a library

effect logging {
def logResult[A](s: A) : A

}

effect async {
def fetch(s: String) : String

}

def add(a: Int, b: Int) = {
val res = a + b;
logResult(res)

}

def someLibraryFunction() = {
try {
add(23, 42)

} with logging {
def logResult(s) = {
println("Logging result: " ++ s.show);
resume(s);

}
};

}

You finished developing a library

effect logging {
def logResult[A](s: A) : A

}

effect async {
def fetch(s: String) : String

}

def add(a: Int, b: Int) : Int / logging = {
val res = a + b;
logResult(res)

}

def someLibraryFunction() : Int / Console = {
try {
add(23, 42)

} with logging {
def logResult(s) = {
println("Logging result: " ++ s.show);
resume(s);

}
};

}

Make types & effects
explicit
- Per function
- Per file
- Per project



46

Dynamic and static typing both offer benefits. 

They may co-exist in programming languages.

[Meijer and Drayton, 2004].

Metals1 language server for Scala:

“insert type annotation” adds explicit typing to implicitly typed 

expression.

1https://scalameta.org/metals



Conclusion

• Effects and handlers allow for novel IDE features

47

• Further research is needed to estimate the usefulness of 

presented features

• These features could help in reasoning about and programming 

with effects and handlers



48

Thank you!



References
[Beelders and du Plessis, 2016] Beelders, T. and du Plessis, J.-P. (2016). The influence of syntax highlighting on scanning and reading behaviour for source code. In Proceedings of the Annual Conference of the South African 

Institute of Computer Scientists and Information Technologists, pages 1–10.

[Brachthäuser et al., 2020] Brachthäuser, J. I., Schuster, P., and Ostermann, K.(2020). Effekt: Lightweight effect polymorphism for handlers. Technical report, Technical Report. University of Tübingen, Germany.

[Busjahn et al., 2014] Busjahn, T., Bednarik, R., and Schulte, C. (2014). What in-fluences dwell time during source code reading? analysis of element type and frequency as factors. In Proceedings of the Symposium on Eye 

Tracking Research and Applications, pages 335–338.

[Busjahn and Schulte, 2013] Busjahn, T. and Schulte, C. (2013). The use of code reading in teaching programming. In Proceedings of the 13th Koli Calling international conference on computing education research, pages 3–11.

[Dillon et al., 2012] Dillon, E., Anderson, M., and Brown, M. (2012). Comparing feature assistance between programming environments and their" effect" on novice programmers. Journal of Computing Sciences in Colleges, 

27(5):69–77.

[Fan et al., 2019] Fan, H., Li, K., Li, X., Song, T., Zhang, W., Shi, Y., and Du, B.(2019). Covscode: A novel real-time collaborative programming environment for lightweight ide. Applied Sciences, 9(21).

[Fischer and Hanenberg, 2015] Fischer, L. and Hanenberg, S. (2015). An empirical investigation of the effects of type systems and code completion on api usability using typescript and javascript in ms visual studio. ACM 

SIGPLAN Notices,51(2):154–167.

[Ford and Parnin, 2015]Ford, D. and Parnin, C. (2015). Exploring causes of frustration for software developers. In2015 IEEE/ACM 8th International Workshop on Cooperative and Human Aspects of Software Engineering, pages 

115–116. IEEE.

[Hannebauer et al., 2018] Hannebauer, C., Hesenius, M., and Gruhn, V. (2018). Does syntax highlighting help programming novices? Empirical Software Engineering,23(5):2795–2828.

[Jones and Burnett, 2007]Jones, S. J. and Burnett, G. E. (2007). Spatial skills and navigation of source code.ACM SIGCSE Bulletin, 39(3):231–235.

[Kelleher and Pausch, 2005] Kelleher, C. and Pausch, R. (2005). Lowering the barriers to programming: A taxonomy of programming environments and languages for novice programmers. ACM Comput. Surv., 37(2):83–137.

[Mader and Egyed, 2011]Mader, P. and Egyed, A. (2011). Do software engineers benefit from source code navigation with traceability? – an experiment in software change management. In Proceedings of the 2011 26th 

IEEE/ACM International Conference on Automated Software Engineering, ASE ’11, page 444–447, USA. IEEE Computer Society.

[Meijer and Drayton, 2004] Meijer, E. and Drayton, P. (2004). Static typing wherepossible, dynamic typing when needed: The end of the cold war between programming languages. Citeseer.

49



References
[Meyerovich and Rabkin, 2013] Meyerovich, L. A. and Rabkin, A. S. (2013). Empiri-cal analysis of programming language adoption. SIGPLAN Not., 48(10):1–18.

[Murphy et al., 2006]Murphy, G. C., Kersten, M., and Findlater, L. (2006). How are java software developers using the elipse ide? IEEE software, 23(4):76–83.

[Nasehi et al., 2012] Nasehi, S. M., Sillito, J., Maurer, F., and Burns, C. (2012). What makes a good code example?: A study of programming q&a in stackoverflow.In2012 28th IEEE International Conference on Software 

Maintenance (ICSM), pages25–34. IEEE.

[Plotkin and Power, 2003] Plotkin, G. and Power, J. (2003).Algebraic operations and generic effects. Applied categorical structures, 11(1):69–94.

[Plotkin and Pretnar, 2009] Plotkin, G. and Pretnar, M. (2009).Handlers of algebraic effects. In European Symposium on Programming, pages 80–94. Springer

[Rask et al., 2021]Rask, J. K., Madsen, F. P., Battle, N., Macedo, H. D., and Larsen,P. G. (2021). Visual studio code vdm support. John Fitzgerald, Tomohiro Oda, and Hugo Daniel Macedo (Editors), page 35.

[Raymond, 1991]Raymond, D. R. (1991). Reading source code. In Proceedings of the1991 conference of the Centre for Advanced Studies on Collaborative research, pages3–16.

[Robbes and Lanza, 2008] Robbes, R. and Lanza, M. (2008). How program history can improve code completion. In2008 23rd IEEE/ACM International Conference on Automated Software Engineering, pages 317–326. IEEE.

[Rodrigo and Baker, 2009]Rodrigo, M. M. T. and Baker, R. S. (2009). Coarse-grained detection of student frustration in an introductory programming course. In Proceedings of the fifth international workshop on Computing 

education research workshop, pages 75–80.

[Sammet, 1978] Sammet, J. E. (1978). The early history of cobol. In History of Programming Languages, pages 199–243.

[Sarkar, 2015] Sarkar, A. (2015). The impact of syntax colouring on program com-prehension. In PPIG, page 8.

[Svyatkovskiy et al., 2019] Svyatkovskiy, A., Zhao, Y., Fu, S., and Sundaresan, N.(2019). Pythia: Ai-assisted code completion system. In Proceedings of the 25th ACMSIGKDD International Conference on Knowledge Discovery 

amp; Data Mining, KDD’19, page 2727–2735, New York, NY, USA. Association for Computing Machinery.

[Van De Vanter, 2002] Van De Vanter, M. L. (2002). The documentary structure of source code. Information and Software Technology, 44(13):767–782. Special Issue onSource Code Analysis and Manipulation (SCAM)

[Zagalsky et al., 2012] Zagalsky, A., Barzilay, O., and Yehudai, A. (2012). Example overflow: Using social media for code recommendation. In2012 Third International Workshop on Recommendation Systems for Software 

Engineering (RSSE), pages 38–42.IEEE.

50


