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[Plotkin and Power, 2003]
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effect Logging {
def logResult[A](s: A) : A
def logMessage(s: String) : String

}

Describing an effect

Example code will be in the Effekt 
language [Brachthäuser et al., 2020]
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def add(a: Int, b: Int) : Int / { Logging } = 
{

val result = a + b;
logMessage(result.show);
result;

}

Utilising effect operations
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def main() : Int / { Logging } = {
add(23, 42)

}

Effect handlers
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def main() : Int / { Logging } = {
add(23, 42)

}

Effect handlers

REPL> main()
[error] Main cannot have user defined effects, but includes
effects: Logging

Missing implementation
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def main() : Int / { Logging } = {
add(23, 42)

}

Effect handlers

How to implement the functionality of Logging?
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[Plotkin and Pretnar, 2009]
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try {
something()

} catch(Exception e) {
System.out.println("Uh oh...")

}

Exception handlers
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def main() : Int / { Logging } = {

add(23, 42)

}

Effect handlers
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def main() : Int / { Logging } = {
try {
add(23, 42)

} with Logging {

};
}

Effect handlers
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def main() : Int / { Logging } = {
try {
add(23, 42)

} with Logging {
def logMessage(s) = {
println("Log message: " ++ s);
resume(s);

}

};
}

Effect handlers
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def main() : Int / {} = {
try {
add(23, 42)

} with Logging {
def logMessage(s) = {
println("Log message: " ++ s);
resume(s);

}
def logResult(s) = resume(s)

};
}

Effect handlers
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IDE Support for Lexical Effects and 
Handlers
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Novel IDE Features

[Fan et al., 2019, 
Svyatkovskiy et al., 2019, 
Rask et al.,2021]
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Novel IDE Features Impact of IDE Features

[Sarkar, 2015, Beelders 
and du Plessis, 2016b, 
Hannebauer et al., 2018]
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Novel IDE Features

Novice

Programmers

Impact of IDE Features

[Dillon et al., 2012, 
Kelleher and Pausch, 
2005]
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Novel IDE Features

Effects and HandlersNovice

Programmers

Impact of IDE Features
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Novel IDE Features

Novice

Programmers

Impact of IDE Features

Effects and Handlers
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IDE Support for Effects and Handlers
-

Proposed features
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What we see

import SomeModule/Functions

def main() = {
someFunction("foo")

}
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What we get

import SomeModule/Functions

def main() : String / { Logging } = {
someFunction("foo")

}
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Demo
ba_1.effekt
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“the effect of static type systems is larger than often assumed, at least 

in comparison to code completion“.

[Fischer and Hanenberg, 2015]

"Using types helps improve readability" of source code.

[Meyerovich and Rabkin, 2013]
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Where does the Error effect come from?

def ex() : Int / { Fail, Next, Error, Flip } = {
or {

accept("do");
commit {

accept("foo");
0;

}
} {

accept("do");
accept("bar");
1

}
}
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Demo
ba_2.effekt
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Similarity to jump-to-definition and find-usage.

Navigation in code: considered a frequently occurring aspect of 

programming, seen as an important skill of a programmer.

[Murphy et al., 2006, Jones and Burnett, 2007, Mader and Egyed, 2011]
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Handle the Error effect

def ex() : Int / { Fail, Next, Error, Flip } = {
or {

accept("do");
commit {

accept("foo");
0;

}
} {

accept("do");
accept("bar");
1

}
}
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Demo
ba_3.effekt
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Similar to other code generating utilities:

auto-completion, refactoring tools, code snippet insertion.

[Murphy et al., 2006, Robbes and Lanza, 2008]

Lack of syntactical knowledge and coding errors: source of frustration 

among programmers.

[Rodrigo and Baker, 2009, Ford and Parnin, 2015]
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What is storeInCloud? 

import Abstractions/Storage

def main() = {
storeInCloud("foo")

}
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What is storeInCloud? 

import Abstractions/Storage

def main() = {
storeInCloud("foo")

}

import Abstractions/Storage

def main() : Int / { Storage } = {
(Storage => Storage.storeInCloud("foo"))

}

An effect operation!
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What code requires the Logging effect?

def main() = {
try {

foo(42);
bar(23){

p => baz(p)
}

} with Logging {
def logMessage(s) = resume(s)

} with Error {
def fail() = logMessage("Aborting!")

}
}
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foo and baz require the Logging effect

def main() = {
try {

foo(42)(Logging, Error);
bar(23)(Error){

p => baz(p)(Logging)
}

} with Logging {
def logMessage(s) = resume(s)

} with Error {
def fail() = logMessage("Aborting!")

}
}
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Secondary information in source code?

Code comments since 1960s.

[Sammet, 1978]

Natural language embedded in code:

source of misinterpretation.

[Van De Vanter, 2002]
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How would one utilise these effects?

effect Logging {
def logString(s: String) : String

}

effect State {
def get() : Int
def put(n : Int) : Unit

}

effect Magic {
def wizard() : rabbit
def hat(r: rabbit) : Unit

}



Outlined Features

39

What is the Magic effect?

effect Magic {
def wizard() : rabbit
def hat(r: rabbit) : Unit

}
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What is the Magic effect?

effect Magic {
def wizard() : rabbit
def hat(r: rabbit) : Unit

}

An IDE could list available handler implementations
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def magicShow { prog: Unit / Magic } = {
var s = rabbit(0);
try {

prog()
} with Magic {

def wizard() = resume(s)
def hat(r) = {

s = r;
resume(())

}
}
s

}

It‘s just an analogy to the State effect
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Exemplary code:

considered helpful during programming

[Zagalsky et al.,2012, Nasehi et al., 2012]

Reading / understanding of foreign source code:

crucial aspect of software development

[Raymond, 1991, Busjahn and Schulte, 2013, Busjahn et al., 2014]
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You finished developing a library

effect logging {
def logResult[A](s: A) : A

}

effect async {
def fetch(s: String) : String

}

def add(a: Int, b: Int) = {
val res = a + b;
logResult(res)

}

def someLibraryFunction() = {
try {

add(23, 42)
} with logging {

def logResult(s) = {
println("Logging result: " ++ s.show);
resume(s);

}
};

}
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But you were lazy:

No function is

explicitly typed.

You finished developing a library

effect logging {
def logResult[A](s: A) : A

}

effect async {
def fetch(s: String) : String

}

def add(a: Int, b: Int) = {
val res = a + b;
logResult(res)

}

def someLibraryFunction() = {
try {

add(23, 42)
} with logging {

def logResult(s) = {
println("Logging result: " ++ s.show);
resume(s);

}
};

}
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You finished developing a library

effect logging {
def logResult[A](s: A) : A

}

effect async {
def fetch(s: String) : String

}

def add(a: Int, b: Int) = {
val res = a + b;
logResult(res)

}

def someLibraryFunction() = {
try {
add(23, 42)

} with logging {
def logResult(s) = {
println("Logging result: " ++ s.show);
resume(s);

}
};

}

You finished developing a library

effect logging {
def logResult[A](s: A) : A

}

effect async {
def fetch(s: String) : String

}

def add(a: Int, b: Int) : Int / logging = {
val res = a + b;
logResult(res)

}

def someLibraryFunction() : Int / Console = {
try {
add(23, 42)

} with logging {
def logResult(s) = {
println("Logging result: " ++ s.show);
resume(s);

}
};

}

Make types & effects
explicit
- Per function
- Per file
- Per project
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Dynamic and static typing both offer benefits. 

They may co-exist in programming languages.

[Meijer and Drayton, 2004].

Metals1 language server for Scala:

“insert type annotation” adds explicit typing to implicitly typed 

expression.

1https://scalameta.org/metals
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• Effects and handlers allow for novel IDE features
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• Further research is needed to estimate the usefulness of 

presented features

• These features could help in reasoning about and programming 

with effects and handlers



48

Thank you!
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