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Abstract
Effect handlers are a language feature which enjoys popularity in academia and is also gaining
traction in industry. Programs use abstract effect operations and handlers provide meaning to
them in a delimited scope. Each effect operation is handled by the dynamically closest handler.
Using an effect operation outside of a matching handler is meaningless and results in an error. A
type-and-effect system prevents such errors from happening.

Lexical effect handlers are a recent variant of effect handlers with a number of attractive
properties. Just as with traditional effect handlers, programs use effect operations and handlers
give meaning to them. But unlike with traditional effect handlers, the connection between effect
operations and their handler is lexical. Consequently, they typically have different type-and-effect
systems.

The semantics of lexical effect handlers as well as their implementations use multi-prompt
delimited control. They rely on the generation of fresh labels at runtime, which associate effect
operations with their handlers. This use of labels and multi-prompt delimited control is theoretically
and practically unsatisfactory.

Our main result is that typed lexical effect handlers do not need the full power of multi-prompt
delimited control. We present the first CPS translation for lexical effect handlers to pure System F.
It preserves well-typedness and simulates the traditional operational semantics. Importantly, it does
so without requiring runtime labels. The CPS translation can be used to study the semantics of
lexical effect handlers as well as as an implementation technique.

1 Introduction

Effect handlers [20, 21] are an attractive language feature, which subsumes a number of useful
features, like exceptions, generators, asynchronous programming, etc. [22]. Recently, we have
seen huge progress in both the theoretical foundations and the practical implementation of
effect handlers [10, 16, 30, 27].

1.1 Lexical Effect Handlers
One such advancement are lexical effect handlers [6, 32, 2], a variant of effect handlers that
enable lexical reasoning in higher-order programs. The semantics of lexical effect handlers
differs from the traditional dynamic handlers in the higher-order case [2]. Where dynamic
effect handlers always handle an effect operation with the dynamically closest handler for
the effect, lexical effect handlers associate a unique label to each handler instance at runtime.
Programs close over those labels, which leads to lexical scoping of effects. Lexical effect
handlers are the basis for new forms of type- and effect systems [6] and equip programmers
with new tools for reasoning [32, 2].

Effect safety for lexical effect handlers means that whenever an effect instances is used,
the handler with the corresponding label is on the runtime stack. To guarantee effect safety,
languages with lexical effect handlers typically have a type-and-effect system which tracks
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2 Typed Continuation-Passing for Lexical Handlers

the set of effect instances a program may use. Operationally, this set of effect instances
corresponds to the set of labels that have to be on the runtime stack for a program to run.

1.2 The Problem
The semantics of lexical effect handlers based on fresh runtime labels directly leads to an
implementation in terms of multi-prompt delimited control [11]. While this is certainly viable
it is not fully satisfactory.

It is unsatisfactory from a theoretical point of view, since the semantic domain of multi-
prompt delimited control by itself does not guarantee effect safety, as prompts can be
undelimited. This makes external safety arguments necessary. Moreover, multi-prompt
delimited control introduces non-termination into an otherwise total language.

It is unsatisfactory from a practical point of view, since implementations of multi-prompt
delimited control either require runtime support [17], or a monadic translation that uses
recursive data structures [11]. Moreover, they require a source of fresh labels and perform a
recursive search for the correct label at runtime. This recursive search has a run-time cost
and hinders compile-time optimizations.

Ideally, we would like to have a semantics for lexical effect handlers by translation into just
System F, without any tags, labels, or recursion. This way, lexical handlers can be understood
in terms of a well-studied, precise, and inherently safe semantic domain. Moreover, programs
translated to System F do not require any runtime support and immediately lend themselves
to optimizations by ordinary beta reduction. But is this possible?

1.3 Our Solution
Luckily, it turns out that typed lexical effect handlers do not need the full power of multi-
prompt delimited control. In this paper, we present a typed CPS translation for lexical
effect handlers to pure System F. To do so, it is necessary to get rid of runtime-generated
labels. At first sight, this seems rather difficult, since labels are crucial to distinguish between
different instances of the same effect at runtime and play an important role in the semantics
of closures. After all, lexical reasoning is established by closing over labels.

As a first step, we make a trivial observation: Lexical handlers are lexical. This suggests
that we can rely on existing research on controlling lexical resources, such as regions [28, 13].
This observation is not new and appears for example in [32] and [2]. In this paper, we
take the leap and talk about regions rather than effects because it feels more natural. It is
important to note that by “region” we mean the abstract concept of a lexical scope and do
not refer to a memory management technique.

Moreover, we follow Fluet and Morrisett [12] in their Single Effect Calculus, and express
effectful function types like

τ → [ε1, ε2, ..., εn] τ ′

as

∀[r; r v ε1, r v ε2, ..., r v εn] τ →r τ ′

replacing sets of effects ε1, ..., εn by a single region (e.g., r) together with subregioning
evidence (e.g., r v εi).

Our CPS translation now rests on two key ideas. Firstly, instead of passing freshly
generated runtime labels and allocating the handler implementation on the runtime stack [2],
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we directly pass the implementation of the corresponding effect handler [32, 6, 26]. Secondly,
to find the correct delimiter, we interpret subregioning evidence constructively. Whenever
an effect operation is used, there must be evidence that a handler with the corresponding
label is on the stack. We observe that this evidence does not merely tell us whether a label
is on the stack, but exactly where it is. In a polymorphic, higher-order language with control
effects it is not immediately clear that this is always the case. Our contribution is to show
that, for typed lexical effect handlers, it is.

1.4 Outline and Contributions

In Section 2, we informally present Λcap, a calculus with lexical effect handlers and a type-
and-effect system that guarantees effect safety. We motivate the key difficulties and explain
our solution by using concrete examples.

In Section 3, we formally present Λcap. We define the standard operational semantics as
an abstract machine that generates a fresh label for each handler instance at runtime. We
prove Progress and Preservation for this abstract machine (Theorems 4 and 5). Effect safety
follows as a simple corollary. This result is not novel, but the proof itself is, since it directly
uses the syntactic method [29].

In Section 4, we present a CPS translation from Λcap to pure System F. The translation
takes well-typed programs in Λcap to well-typed terms in System F (Theorem 8). Since well-
typed programs in System F never get stuck, this entails effect safety of Λcap in yet another
novel way. We then prove that the CPS translation simulates the operational semantics
(Theorem 10). This theorem is our main contribution. It is surprising, since the operational
semantics uses labels to find handlers on the stack, while the CPS translation targets pure
System F, without any labels, mutable state, or recursive types.

In Section 5 we compare to related work and in Section 6 we conclude.

2 Overview

In this section, we give an overview over our source language Λcap and the key ideas in this
paper. Λcap is not meant to be used directly. Its purpose is similar to ExEff [24] which
makes effects and subeffecting very explicit. Since Λcap is not designed to be user facing, we
introduce it by comparison with examples written in Helium [2]. While we use the language
Helium for illustration, other languages with lexical effect handlers such as Olaf [32, 34] or
Scala Effekt [5] have very similar type systems and operational semantics. Λcap is a mostly
standard call-by-value functional language with multi-arity functions. It has one additional
feature: lexical effect handlers. Its type-system is also mostly standard, but features a region
system with subregioning and explicit subregion evidence.

The purpose of an effect system is to guarantee effect safety. Intuitively effect safety
means that every effect operation is eventually handled. More concretely, in the case of
lexical effect handlers, it means that every effect instance is used in the dynamic extent of
the corresponding handler. We reuse existing work and call this dynamic extent a region. To
guarantee effect safety, we keep track of the regions in which a computation can safely run.

2.1 Using Lexical Effects

As a starting point, consider the following simple example in Helium, which asks for two
numbers and adds them:
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4 Typed Continuation-Passing for Lexical Handlers

signature Ask =
| ask : Unit ⇒ Int

let askTwice ‘a1 ‘a2 () = ask ‘a1 () + ask ‘a2 ()

We explicitly abstract over and pass two different effect instances ‘a1 and ‘a2 of the same
effect Ask. The function askTwice has the following type:

(‘a1 : Ask) → (‘a2 : Ask) → Unit →[‘a1,‘a2] Int

It receives two instances of the effect Ask that appear in the effect [‘a1, ‘a2] of the function.
This effect does not merely tell us that askTwice has some Ask effect, but that it uses these
very effect instances.

I Example 1. Now consider the same function written in Λcap. We split the concept of effect
instances (e.g., ‘a1 and ‘a2), which appear on the term level and on the type level, into
term-level capabilities (e.g., ask1 and ask2 ) and type-level regions (e.g., r1 and r2 ).

def askTwice[r, r1, r2 ; n1 : r v r1, n2 : r v r2](
ask1 : Ask[r1], ask2 : Ask[r2]

) at r {
do ask1[n1](unit) + do ask2[n2](unit)
}

In Λcap functions explicitly abstract over three things:

1. Functions abstract over regions (e.g., r , r1 , and r2 ). Inspired by the Single Effect
Calculus [12], in Λcap there are no compound effects (such as [‘a1, ‘a2]). Instead, a
function like askTwice always only runs in a single region (e.g., r ).

2. Functions abstract over subregion evidence (e.g., n1 and n2 ). We say that a region r
subsumes another region r1 (written r v r1 ) if all capabilities that can be used in r1
can also be used in r . Subregion evidence witnesses this subsumption.

3. Functions abstract over capabilities (e.g., ask1 and ask2 ). Every capability has a region
where it is safe to use. When a capability like ask1 is used, we require explicit evidence
(e.g., n1 ) that the current region subsumes the region of the capability.

Consequently, the function askTwice has the following type:

∀[r, r1, r2 ; r v r1, r v r2](Ask[r1], Ask[r2]) →r Int

This type has the same purpose as the corresponding type in Helium, while being more
explicit.

2.2 Handling Lexical Effects
Lexical effect handlers introduce a name for each effect instance. Consider the following
example in Helium:

handle ‘a1 in
handle ‘a2 in

askTwice ‘a1 ‘a2 ()
with | ask () ⇒ resume 42 end

with | ask () ⇒ resume 43 end
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In this example ‘a1 and ‘a2 are the names of two different instances of the Ask effect. We
explicitly pass these effect instances to askTwice. Within askTwice there are two uses of
the ask operation. Each of them will refer to a different handler. The example evaluates to
85. It is possible to swap effect instances or to pass the same effect instance twice.

I Example 2. Now consider the same program in Λcap. Each handler introduces three things:
firstly, a fresh region (e.g., r1 ) the handled program will run in. Secondly, evidence (e.g.,
n1 : r1 v > ) that the fresh region subsumes the outer one. Thirdly, a term-level
capability (e.g., ask1) containing the handler implementation. The capability’s region is the
freshly introduced region.

try { [r1 ; n1 : r1 v >](ask1 : Ask[r1]) ⇒
try { [r2 ; n2 : r2 v r1](ask2 : Ask[r2]) ⇒

askTwice[r2, r1, r2 ; n1, 0](ask1, ask2)
} with { (u, k) ⇒ k(42) }
} with { (u, k) ⇒ k(43) }

In Λcap, each statement is checked in a region. In this example, the overall program is checked
in region > , the statement inside of the first handler is checked in effect r1 , and the call to
askTwice is checked in effect r2 . The evidence each handler introduces witnesses that the
freshly introduced region subsumes the outer region.

When compared with Helium, in Λcap the call to askTwice is more explicit as we
explicitly apply functions to regions, evidence, and capabilities. Notably, the first evidence
argument (i.e., n1) witnesses that r2 subsumes r1, and the second evidence argument (i.e., 0)
witnesses that r2 subsumes r2 itself, that is reflexivity. It is possible to swap capabilities or
to pass the same capability twice, in which case the region- and evidence arguments must be
adjusted accordingly.

2.3 Lexical Reasoning

Lexical handlers are not only useful to disambiguate different instances of the same effect [7].
They also offer improved reasoning tools in the presence of higher-order functions [33, 32].
Consider the following example, again in Helium:

handle ‘exc1 in
let abort () = fail ‘exc1 () in
handle ‘exc2 in

abort ()
with | fail u ⇒ "aborted two" end

with | fail u ⇒ "aborted one" end

We install an exception handler and then define a function abort, which immediately fails.
Because handlers in Helium are lexical, we know that the function abort will always abort
to the handler which introduced the effect instance ‘exc1. This is the case, even if it is used
under another exception handler and even if this handler was installed inside of another
function. As we will see later, operationally, abort closes over a fresh label that is bound to
‘exc1. Hence the name “lexical” effect handler.

I Example 3. Again, the same example in Λcap is more explicit:
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6 Typed Continuation-Passing for Lexical Handlers

try { [r1, n1 : r1 v >](exc1 : Exc[r1]) ⇒
def abort[r, n : r v r1]() at r { do exc1[n](unit) };
try { [r2, n2 : r2 v r1](exc2 : Exc[r2]) ⇒

abort[r2, n2]()
} with { (u, k) ⇒ ”aborted two” }
} with { (u, k) ⇒ ”aborted one” }

The function abort is region polymorphic. It abstracts over its region r . However, since it
uses the capability exc1 it is only safe to call abort in region r1 or subregions of it.
Therefore we have to constrain the region polymorphism and require that r subsumes r1 .
Effectively, this makes sure that we only use abort in the dynamic extent of the handler that
introduced exc1 . Concretely, to express constrained effect polymorphism, we abstract over
evidence n that witnesses r v r1 . We provide this evidence at the use of exc1 .

2.4 Operational Semantics and CPS Translation

Before going into the technical details of Λcap, here we offer a high-level overview over the
operational semantics of Λcap and illustrate our CPS translation to System F.

2.4.1 Step One: Handler Passing

The operational semantics of Λcap is based on an abstract machine for multi-prompt delimited
control. It generates fresh labels at runtime to disambiguate effect instances, and pushes
frames with these labels onto a runtime stack to delimit the extent of effect operations. As
mentioned in the introduction, we pass the handler implementation down to where it is used
instead of allocating it on the runtime stack.

In Example 2, after taking a few steps and having handled the use of ask1 , the state of
the machine is the following.

〈 do cap@3a1 { (u, k) ⇒ k(42) }[•](unit) ‖
43 + � :: #@3a1 { � } :: #@b29 { � } :: • 〉

It consists of a statement and a stack, separated by ‖. Since we already executed the call to
ask1 , the stack contains the frame 43 + � . It also contains two delimiters, one for the
inner handler (marked with @3a1) and one for the outer handler (marked with @b29). The
statement performs an effect and uses the capability cap@3a1{ (u, k) ⇒ k(42) } . The
capability consists of the runtime label @3a1 as well as the handler implementation.

Similarly, our CPS translation does not rely on runtime labels to find the correct handler
implementation. Again, we pass the handler implementation down to its use-site. The
translation of this machine state is the following.

((λu. λk. k 42) unit)
(λx. (λx1. λk1. k1 x1) (43 + x)) (λx2. λk2. k2 x2) done

The first line shows the translation of the statement which uses the capability. We simply
translate a capability by translating its handler implementation. The second line shows the
translation of the stack. In this example the two delimiters partition the stack into three
segments which we translate to three continuation arguments. The label of the capability is
associated with the first delimiter. The handler implementation will correctly capture the
first of the three continuations.
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2.4.2 Step Two: Constructive Evidence
The operational semantics of Λcap compares the labels at delimiters to capture the correct
part of the stack when an effect operation is used. To guarantee that the search for a label
is always successful, we let regions and subregioning evidence be lists of labels. This is
important for our proof of effect safety (Theorem 6), but neither regions nor evidence play
any role computationally. But, as mentioned in the introduction, in our CPS translation we
give computational meaning to evidence, and use evidence terms to find the correct handler.
Surprisingly, this also works in the presence of higher-order functions and closures.

In Example 3, we used abort under a different handler for the same exception effect.
Furthermore, we instantiated its region r with r2 and passed evidence n2 witnessing that
r2 v r1 . After taking a few steps, the state of our abstract machine looks like this:

〈 do cap@44c { (u, k) ⇒ ”aborted one” }[@8ab :: • ](unit) ‖
#@8ab { � } :: #@44c { � } :: • 〉

In this example, the label @44c of the capability is associated with the second (that is, outer)
delimiter on the stack. It is crucial that the continuation k is bound to the entire context up
to this delimiter. Our abstract machine achieves this by comparing labels until the matching
delimiter is found. How can we achieve the same in our CPS translation where no labels
exist?

We observe that in this example the evidence @8ab :: • contains exactly the labels
of the delimiters we have to skip. More generally, following [31], we will show that this is
always the case (Theorem 7). The central idea of this paper is to take advantage of this fact
and give computational content to subregion evidence in order to capture the correct part of
the stack.

Concretely, we translate this machine state to the following term in System F:
(Λa. λm. λk. λj. m (λx. k x j))

((λu. λk. λk3. k3 ”aborted one”) unit)
(λx1. λk1. k1 x1) (λx2. λk2. k2 x2) done

The first two lines correspond to the statement that uses the capability. As before, the
translated handler implementation (second line) is applied to the argument unit .
Importantly, we translate the singleton evidence @8ab :: • to the function in the first line,
called Lift [25]. Intuitively, it will capture the first continuation and push it onto the second
one. This way, although there are no labels, the program executes correctly. In the next
section, we start formalizing these ideas by introducing Λcap.

3 A Calculus with Lexical Effect Handlers

In this section, we formally introduce our source language Λcap, a basic calculus with lexical
effect handlers, regions, and subregion evidence. We define a type system and specify the
operational semantics as an abstract machine.

The Λcap calculus is sound and effect safe: we prove the usual theorems of progress
(Theorem 4) and preservation (Theorem 5). Effect safety then follows as a corollary: whenever
we use an effect, the corresponding handler is on the stack (Corollary 6). Moreover, we
establish the correspondence between type-level regions and term-level evidence (Corollary 7).

The paper is accompanied by a mechanized formalization of Λcap and its operational
semantics in the Coq theorem prover [1], including the theorems of progress and preservation.
The mechanization also includes the translation to System F as well as a proof of well-typedness
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Terms:
Statements
s ::= val x = s; s sequencing of comp.

| return v returning values
| v[ρ ; e](v) calling functions
| do v[e](v) performing effects
| try { [r ; n](c) ⇒ s }

with { (x, k) ⇒ s } handling effects
Values
v ::= x, f , c, ... variables

| () | 0 | 1 | ... | true | ... primitives
| { [r ; n : γ](x : τ) at ρ ⇒ s} closures

Evidence
e ::= n, ... evidence variables

| 0 reflexive evidence
| e ⊕ e transitive evidence

Types:

Types
τ ::= Int | Bool | ... primitives

| ∀[r ; γ](τ) →ρ τ functions
| Cap ρ τ τ capabilities

Regions
ρ ::= r region variable

| > top-level region

Constraints
γ ::= ρ v ρ subregion

Environments:
Γ ::= ∅ empty environment

| Γ, r region binding
| Γ, n : γ evidence binding
| Γ, x : τ value binding

Figure 1 Syntax of Λcap.

preservation (Theorem 8). The mechanized formalization is attached as supplementary
material.

3.1 Syntax
Figure 1 defines the syntax of Λcap. We use fine-grain call-by-value [19] and syntactically
distinguish statements, which can have effects, and pure values.

Syntax of Statements Since statements can have effects, it makes for a clearer presentation
to explicitly sequence them and to explicitly return values. Calling functions, performing
effects, and handling effects are statements. We apply a function to a list of regions ρ, a list
of evidence terms e, and a list of values v. We use a capability to perform an effect with
do v0[e](v), where v0 is the capability, e is evidence, and v is the argument. We handle a
statement with try { ... } with { ... }. The handled statement receives a region r , evidence
n, and a capability c. The handler receives an argument x and a continuation k.
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Syntax of Values Variables stand for values. Functions (i.e., { [r ; n : γ](x : τ) at ρ ⇒ s})
abstract over a list of type-level region parameters (i.e., r), a list of evidence variables (i.e.,
n : γ), and a list of term-level value parameters (i.e., x : τ). Importantly, each function
is defined to run exactly in a region ρ. We omit type abstraction from this presentation
since it is orthogonal to the rest of the calculus. Our mechanized formalization includes type
abstraction and application.

Syntax of Evidence Evidence expressions are either an evidence variable n, the empty
evidence 0 witnessing reflexivity of subregioning, or the composition of evidence e ⊕ e,
witnessing the transitivity of subregioning.

Syntax of Types Apart from the standard base and function types, Λcap includes a type of
capabilities. The type Cap ρ τ1 τ2 indicates that a capability of this type can be used in a
region ρ or any subregion and can be applied to an argument of type τ1 to get a result of
type τ2.

Syntax of Regions and Constraints Regions ρ are either region variables r or the top-level
region >. Intuitively, the top-level region signals that no effect operations can be used.
Constraints γ express subregioning relationships.

We define the following short-hand notation for named function definitions:
def f [r ; n : γ](x : τ) at ρ { s0 }; s .=

val f = return { [r ; n : γ](x : τ) at ρ ⇒ s0}; s

The list of region parameters scopes over the evidence parameters types, the parameter types,
the return type, the annotated region ρ, and the body s0 of the function.

3.2 Typing
Figure 2 defines the typing rules of Λcap. We type statements, values, and evidence with
different judgement forms. While all three are typed in an environment Γ containing region-,
evidence-, and value bindings, only statements are typed in a given region ρ. Statements
may perform effectful (that is, serious in the terminology of Reynolds [23]) computation,
which is only safe in certain contexts. In contrast, values are pure (that is, trivial) and can
be used in any context.

Typing of Statements Rule Val types sequencing of statements. We type the two state-
ments s0 and s in the same region ρ of the compound statement. Returning a result from a
computation (rule Ret) can be typed in any region. In rule App we apply a function v0 to
a list of regions ρ, a list of evidence e, and a list of arguments v. The type of v0 is a function
type annotated with a region ρ0. The overall statement is typed in a region ρ. The premise
ρ = ρ0[r 7→ ρ] requires that, after substituting the regions ρ for the region variables r , both
have to syntactically be the same. Note that we do not have any implicit subtyping here or
elsewhere. Subregioning exclusively occurs through the passing of explicit subregion evidence.
In rule Do, we type the use of a capability v0 with evidence e and argument v. The evidence
e witnesses that the region ρ of the statement subsumes the region of the capability ρ′. When
a capability is used in a different context, we require explicit evidence that it is safe to do so.
Again, there is no implicit subtyping and no subsumption rule. In rule Try, the delimited
statement s0 is typed in a fresh region r . The evidence variable n witnesses that the fresh
region r subsumes the outer region ρ of the whole statement. The capability c can be used
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10 Typed Continuation-Passing for Lexical Handlers

Statement Typing Γ
↑

ρ
↑

` s
↑

: τ
↓

Γ ρ ` s0 : τ0 Γ, x0 : τ0 ρ ` s : τ

Γ ρ ` val x0 = s0; s : τ
[Val]

Γ ` v0 : Cap ρ′ τ1 τ2 Γ ` e : ρ v ρ′ Γ ` v : τ1

Γ ρ ` do v0[e](v) : τ2
[Do]

Γ ` v : τ

Γ ρ ` return v : τ
[Ret]

Γ ` v0 : ∀[r ; γ](τ) →ρ0 τ0 Γ ` e : γ[r 7→ ρ] Γ ` v : τ [r 7→ ρ] ρ = ρ0[r 7→ ρ]
Γ ρ ` v0[ρ ; e](v) : τ0[r 7→ ρ]

[App]

Γ, r , n : r v ρ, c : Cap r τ1 τ2 r ` s0 : τ Γ, x : τ1, k : τ2 →ρ τ ρ ` s : τ

Γ ρ ` try { [r ; n](c) ⇒ s0 } with { (x, k) ⇒ s } : τ
[Try]

Value Typing Γ
↑

` v
↑

: τ
↓

Γ(x) = τ

Γ ` x : τ
[Var] Γ ` 1 : Int

[Lit]

Γ, r , n : γ, x : τ ρ ` s0 : τ0

Γ ` { [r ; n : γ](x : τ) at ρ ⇒ s0 } : ∀[r ; γ](τ) →ρ τ0
[Fun]

Evidence Typing Γ
↑

` e
↑

: γ
↓

Γ(n) = ρ1 v ρ2

Γ ` n : ρ1 v ρ2
[EviVar]Γ ` 0 : ρ v ρ

[Reflexive]

Γ ` e1 : ρ v ρ′ Γ ` e2 : ρ′ v ρ′′

Γ ` e1 ⊕ e2 : ρ v ρ′′
[Transitive]

Figure 2 Type system of Λcap.

in region ρ or any subregion. The statement s in the handler clause is typed in the same
region as the overall statement. It receives a parameter x and a continuation k. The latter is
a function which can only be called in precisely region ρ. This is because the continuation is
itself effectful, and we want to ensure that calling it is safe.

Typing of Values The typing rules for variables Var and primitives Lit are standard.
Rule Fun types functions. We type the body s0 of the function in an environment extended
with region parameters r , evidence parameters n : γ, and value parameters x : τ . Every
function is annotated with a region ρ that specifies exactly the region that the function has
to be called in. This region ρ is also the region in which we type the body s0. The region
parameters r may appear in the parameter types, the return type, the function’s region ρ,
and body s0. This allows us to write region-polymorphic functions that can run in any region.
Evidence parameters allow us to write region-polymorphic functions that are constrained to
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Syntax of Labels:

l ::= @a5f | @4b2 | ...

Additional Runtime Values:

v ::= ... | capl { (x, k) ⇒ s } | resume(F :: H)

Syntax of Machine States:
M ::= 〈 s ‖ K 〉 executing

| 〈 do v[w](v) ‖ K ‖ H 〉 unwinding
| 〈 resume(F :: H)(v) ‖ K 〉 rewinding

Syntax of Stacks:

K ::= • | F :: K

Syntax of
Resumptions:

H ::= • | F :: H

Syntax of Frames:
F ::= val x = �; s
| #l { � }

(a) Syntax of the abstract machine.
Machine Steps:

(return) 〈 return v ‖ val x = �; s :: K 〉 → 〈 s[x 7→ v] ‖ K 〉

(push) 〈 val x = s0; s ‖ K 〉 → 〈 s0 ‖ val x = �; s :: K 〉

(call) 〈 { [r ; n : γ](x : τ) at ∗ ⇒ s0 }[∗ ; ∗](v) ‖ K 〉 → 〈 s0[r 7→ ∗,n 7→ ∗, x 7→ v] ‖ K 〉

(try) 〈 try { [r ; n](c) ⇒ s0 } with { (x, k) ⇒ s } ‖ K 〉→
〈 s0[r 7→ ∗,n 7→ ∗, c 7→ capl { (x, k) ⇒ s }] ‖ #l { � } :: K 〉

where l = generateFresh()

(pop) 〈 return v ‖ #l { � } :: K 〉 → 〈 return v ‖ K 〉

(perform) 〈 do capl { (x, k) ⇒ s }[∗](v) ‖ K 〉 → 〈 do capl { (x, k) ⇒ s }[∗](v) ‖ K ‖ • 〉

(unwind) 〈 do capl { (x, k) ⇒ s }[∗](v) ‖ val x = �; s :: K ‖ H 〉 →
〈 do capl { (x, k) ⇒ s }[∗](v) ‖ K ‖ val x = �; s :: H 〉

(forward) 〈 do capl { (x, k) ⇒ s }[∗](v) ‖ #l′ { � } :: K ‖ H 〉 →
〈 do capl { (x, k) ⇒ s }[∗](v) ‖ K ‖ #l′ { � } :: H 〉

where l 6= l ′

(handle) 〈 do capl { (x, k) ⇒ s }[∗](v) ‖ #l′ { � } :: K ‖ H 〉 →
〈 s[x 7→ v][k 7→ resume(#l′ { � } :: H)] ‖ K 〉

where l = l ′

(rewind) 〈 resume(F1 :: F2 :: H)(v) ‖ K 〉 → 〈 resume(F2 :: H)(v) ‖ F1 :: K 〉

(resume-1) 〈 resume(val x = �; s :: • )(v) ‖ K 〉 → 〈 s[x 7→ v] ‖ K 〉

(resume-2) 〈 resume(#l { � } :: • )(v) ‖ K 〉 → 〈 return v ‖ K 〉

(b) Steps of the abstract machine.

Figure 3 Syntax and reduction rules of the abstract machine for Λcap.

only run in a subregion of a given region.

Typing of Evidence Evidence variables are looked up in the typing environment. Reflexivity
evidence 0 witnesses that every region is a subregion of itself, and transitivity evidence
e1 ⊕ e2 witnesses the transitivity of subregioning, which is reflected in their typing rules.
We require the composition of evidence to be associative.
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12 Typed Continuation-Passing for Lexical Handlers

3.3 Operational Semantics
Figure 3 lists the syntax and reduction rules of the abstract machine semantics of Λcap.

Labels As is common for lexical effect handlers, the semantics of Λcap is given in terms
of a machine for multi-prompt delimited control. As mentioned in the introduction, our
operational semantics uses labels l, which are freshly generated at runtime. Later in the CPS
translation (Section 4), we will see how to avoid using runtime labels.

Runtime Values In order to specify the operational semantics, we extend the syntax of values
with two additional runtime constructs. Firstly, runtime capabilities capl { ... } which consist
of a label l and a handler implementation. Secondly, continuations resume(#l { � } :: H)
which contain a resumption of the form #l { � } :: H.

Machine States There are three different kinds of machine states. The component they all
have in common is a runtime stack K which is a list of frames. A frame is either a sequencing
frame val x = �; s or a delimiter frame #l { � } with a label l. The executing state has
the form 〈 s ‖ K 〉. It consists of the statement s under evaluation and the runtime stack
K. The unwinding state consists of a performing statement, the runtime stack K, and a
resumption H. In the unwinding state we unwind the stack K and push frames onto the
resumption. The rewinding state consists of a resumption H, an argument v, and the runtime
stack K. In the rewinding state we push frames from the resumption back onto the stack.

Reduction Rules The rules of the abstract machine in Figure 3 are mostly standard. While
in Λcap, we are very explicit about regions and evidence, we omit regions and evidence from
this presentation of the operational semantics (i.e., write ∗), because they are operationally
irrelevant. But as we will see, they play an important role in our safety proof, in our
CPS translation, and in our proof of simulation. The full stepping relation is provided in
Appendix A, which is attached as supplementary material. The first rule (return) returns to
the next frame on the stack. The (push) rule focuses on s0 and pushes a frame on the stack.
Rule (call) performs reduction by simultaneously substituting region arguments ρ for region
variables r , evidence arguments e for evidence variables n, and values v for value parameters
x. Rule (try) generates a fresh label and pushes a delimiter frame with this label onto the
stack. The capability variable c is substituted by a capability that contains this label l
and the handler implementation. Rule (pop) pops a delimiter off the stack upon normal
return. Rule (perform) transitions from normal execution to unwinding. Rules (unwind) and
(forward) move the next frame from the runtime stack onto the resumption. Rule (handle)
executes the handler statement s with argument v. The continuation k is a resumption that
rewinds the stack when called. This resumption must contain the delimiter frame #l { � }.
Rule (rewind) repushes the resumption onto the stack and resumes execution by returning
the argument v to the stack.

3.4 Soundness
Λcap satisfies the standard soundness properties.

I Theorem 4 (Progress).
If ` M ok, then either M is of the form 〈 return v ‖ • 〉 for some value v, or M → M′ for
some machine M′.
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Extended syntax of evidence and regions:

e ::= ... | w evidence value
ρ ::= ... | u runtime region

Evidence values and runtime regions:

w ::= • | l :: w evidence values
u ::= • | l :: u runtime regions

Runtime region of stack:

RJ · K : K → u
RJ • K = •
RJ val x = �; s :: K K = RJ K K
RJ #l { � } :: K K = l :: RJ K K

Normalization of evidence:
N J · K : e → w
N J 0 K = •
N J e1 ⊕ e2 K = N J e1 K ++ N J e2 K
N J w K = w

Abstract machine, evidence value, and capability typing:
∅ RJ K K ` s : τ ` K : τ

` 〈 s ‖ K 〉 ok
[Machine]

u0 = w ++ u1

∅ ` w : u0 v u1
[Evidence]

Γ, x : τ1, k : τ2 →u τ u ` s : τ

∅ ` capl { (x, k) ⇒ s } : Cap (l :: u) τ1 τ2
[Capability]

Figure 4 Proof invariants of the abstract machine.

I Theorem 5 (Preservation).
If ` M ok and M → M′ then ` M′ ok.

In order to prove progress and preservation, we need to establish invariants, which are
maintained by machine reduction. Figure 4 lists the most important concepts needed for our
proofs. The full typing rules for the abstract machine are provided in Appendix A.

Extended syntax We extend the syntax of values with evidence values w, and the syntax of
regions with runtime regions u. Both are lists of labels. The top-level region > is the empty
runtime region •.

Connecting regions, evidence, and the stack To establish the connection between type-
level regions ρ and the concrete runtime stack K, we define a semantic function RJ · K which
computes the ordered list of labels of handler frames on the stack. This is the runtime region
of a stack. We define a semantic function N J · K, which normalizes evidence expressions to
a list of labels.

Runtime typing In the typing of machine states, we type the statement s with the runtime
region of the current stack K. In the typing of evidence values, we ensure that the evidence
value w is the precise difference between runtime regions u0 and u1. In the typing of
capabilities, the region of the capability is a runtime region where the label of the capability
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14 Typed Continuation-Passing for Lexical Handlers

is the first element. In the handler implementation of the capability, the continuation is a
function which has to run exactly in the rest of the runtime region of the capability.

Maintaining Invariants To maintain these invariants throughout reduction, in the full
version of our reduction semantics (Appendix A), we substitute runtime regions for region
variables and evidence values for evidence variables. For example, in step (try) we substitute
l :: RJ K K for the region variable r and we substitute the singleton runtime region l :: •
for the evidence variable n. In rule (forward) the evidence that occurs in the statement must
be of the form l ′ :: RJ K K before the step and just RJ K K after the step.

3.5 Additional Properties
The runtime typing rules are designed to precisely reflect the invariants of the operational
semantics. They very tightly constrain the possible machine states that can be encountered
during execution. Effect safety follows as a corollary:

I Corollary 6 (Effect Safety).
If 〈 do capl { (x, k) ⇒ s }[e](v) ‖ K 〉 ok, then l ∈ RJ K K.

Whenever we use a capability, a delimiter with the corresponding label is on the runtime
stack.

However, we can prove an even stronger property. Whenever we use a capability, the
evidence value precisely reflects the runtime stack. This corollary is inspired by the similarly
named theorem of Xie et al. [31].

I Corollary 7 (Evidence Correspondence).
If 〈 do v0[e](v) ‖ K 〉 ok, then RJ K K = N J e K ++ (l :: u) where l is the label of v0 and
u is some runtime region.

This means that runtime evidence on the one hand and the labels in delimiters on the stack
on the other hand are operationally redundant. The unwinding can either use evidence terms,
or labels on the stack, since the two agree. Our proof uses both and establishes this fact.
In the operational semantics we erase evidence terms as they do not have any significance
at runtime. In the next section we are going to do the opposite: Erase labels in delimiter
frames and purely rely on evidence terms to have the correct content at runtime.

4 Continuation-Passing Style Translation

We now present the CPS translation of Λcap to pure System F. Notably, in System F there
are no labels. As a main result of this paper, by translating Λcap into pure System F, we show
that labels, recursive datatypes, or mutable state are not necessary to implement statically
typed, lexical effect handlers.

Our CPS translation can serve as a compilation technique for languages with lexical
effect handlers into any language that supports first-class functions, which makes it widely
applicable. Moreover, it is a generalization of the translation presented by Schuster et al.
[26], which has been shown to enable compile-time optimizations for significant performance
improvements.

We translate into one particular variant of CPS, called iterated CPS [9, 25]. Every stack
segment, delimited by a label, is represented by its own continuation argument. In other
words, in iterated CPS, functions do not receive one but potentially multiple continuations.
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Translation of Types:

T J Int K = Int

T J ∀[r , γ](τ) →ρ τ0 K = ∀r . T JγK → T JτK → Cps T JρK T Jτ0K

T J Cap ρ τ1 τ2K = T Jτ1K → Cps T JρK T Jτ2K

T J r K = r

T J >K = Void

T J ρ v ρ′ K = ∀a. Cps T Jρ′K a → Cps T JρK a

Translation of Values:
VJ x K = x

VJ 1 K = 1

VJ { [r ,n : γ](x : τ) at ρ ⇒ s } K = Λr . λn. λx. SJsK

Translation of Evidence:
EJ n K = n

EJ 0 K = Λa. λm. m

EJ e1 ⊕ e2 K = Λa. λm. EJe1K a (EJe2K a m)

Translation of Statements:
SJ return v K = λk. k (VJvK)

SJ val x = s0; s K = λk. SJs0K (λx. SJsK k)

SJ v0[ρ, e](v) K = VJv0K T JρK EJeK VJvK

SJ do v0[e](v) K = EJeK T Jτ2K (VJv0K VJvK)

SJ try { [r , n](c) ⇒ s0 } with { (x, k) ⇒ s } K =
Reset ((Λr . λn. λc. SJs0K)

(Cps T JρK T JτK) (Lift) (λx. λk. SJsK))

Auxiliary Definitions:

Cps R A = (A → R) → R

Reset : Cps (Cps R A) A → Cps R A
Reset = λm. m (λx. λk. k x)

Lift : ∀a. Cps R a → Cps (Cps R R′) a
Lift = Λa. λm. λk. λj. m (λx. k x j)

Figure 5 Translation from Λcap to System F.

Figure 5 defines the translation of Λcap to System F. A CPS translation is a translation
of types and of terms. Our translation is defined over typing derivations of Λcap (such as,
SJ Γ ρ ` s : τ K, abbreviated SJ s K) to well-typed terms in System F.

Translation of Types
Base types, such as Int are left unchanged by the translation. Functions are translated to
functions that abstract over a list of region variables at the type level, and over a list of
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16 Typed Continuation-Passing for Lexical Handlers

evidence terms and a list of values at the term level. While evidence was computationally
irrelevant in the operational semantics, it now plays a key role in finding the correct handler.
Capabilities are translated to functions in CPS.

Regions become answer types. The iterated CPS translation is very similar to the
traditional CPS translation. In particular, the auxiliary meta-definition Cps R A is defined
as the familiar type (A → R) → R of computations in CPS with return type A and answer
type R.

We translate region variables to type variables in System F and the top-level region to
the empty type Void. Evidence terms are functions between effectful computations, as can
be seen from the translation of evidence types. Since regions become answer types, region-
polymorphic functions translate to answer-type polymorphic functions in CPS. Evidence
terms adjust these answer types. They are constructive witnesses that we can move a
computation from one region to a different one.

Translation of Terms
We translate variables, primitives, and functions in the obvious way. We translate evidence
to functions that lift a computation to be compatible with a different region, i.e. answer type.
The reflexivity evidence is translated to the polymorphic identity function, and transitivity
of evidence amounts to function composition.

As usual in CPS, return statements are translated to calls to the current continuation,
and sequencing of statements is translated to push a frame onto the current continuation k,
that is, the continuation first runs s and then continues with k. We translate function calls
to curried function application. The region arguments are type arguments, and the evidence-
and value arguments are term arguments.

The two most complicated statements to translate are performing and handling. We
translate the use of a capability v0 with an argument v to an application of the capability to
the argument. We then use the translated evidence e to adjust the resulting computation to
run with the correct answer type. We translate handling statements to an application of
the handled statement to three arguments: the answer type Cps T JρK T JτK, the singleton
evidence Lift, and the capability λx. λk. SJsK. We use the meta function Reset to apply
the whole term to an empty continuation argument.

4.1 Typability Preservation
We translate well-typed programs in Λcap to well-typed programs in System F.

I Theorem 8 (Well-typedness of Translated Terms).
If Γ ρ ` s : τ , then T J Γ K ` SJ s K : Cps T J ρ K T J τ K

Proof. Straightforward induction over the typing derivation. J

This theorem entails that, under the CPS translation, well-typed programs never get stuck,
and that they always terminate. We mechanized the translation as well as the proof of
Theorem 8 in the Coq proof assistant.

I Example 9. To understand how regions in the source language and types in the target
language are related, consider the following simple example where we install a handler and
immediately use the capability it introduces.

try { [r ; n](exc) ⇒ do exc[0](unit) }
with { (x, k) ⇒ return 1 }
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This source statement is typed with ∅ > ` ... : Int, and we translate it to the following
term in System F with overall type Cps Void Int.

(Λr. λn. λexc. (Λa. λm. m) Int (exc unit))
(Cps Void Int) (Lift) (λx. λk. λk2. k2 1)
(λx. λk. k x)

The translation of the handled statement abstracts over a type and two terms. Maybe
surprisingly, we apply it to four arguments. So how can this be welltyped? Recall that the
handled statement (that is, do exc[0](unit) ) is typed in region r and consequently is
translated to a term in CPS of type Cps r Int. We instantiate the polymorphic answer type
r with the type Cps Void Int, which results in the overall type Cps (Cps Void Int) Int with
two levels of control. This makes the application to the evidence, the capability, and the
empty continuation type check. The capability has type Unit → Cps (Cps Void Int) Int. It
discards the first continuation and returns to the second.

4.2 Simulation
In Section 3, we defined an operational semantics of Λcap. In this section, we defined a
CPS translation to System F in CPS. We now prove that the CPS translation simulates the
operational semantics. To this end, we define a translationMJ · K of intermediate machine
states M to well-typed terms in System F.

For each step the machine takes, there is a corresponding (possibly empty) sequence of
steps between the translated terms.

I Theorem 10 (Simulation).
If ` M ok and M → M′, thenMJ M K →∗ MJ M′ K.

Proof. By considering each case of the stepping relation. The (perform) step needs its own
lemma, which we prove by induction on evidence terms. J

We translate statements to terms and stacks to evaluation contexts [8]. We then define the
translation of the machine in its executing state, which consists of a statement s and a stack
K, as the plugging of the translation of the statement into the translation of the stack. The
translation of the other machine states follows the same idea. We translate the empty stack
to a special primitive function done, which will return the overall result of the program. It is
called exactly once, when the machine is in its final state and we return to the empty stack.
The full translation is given in Appendix A.

The following corollary follows from Theorem 10. When we start from a closed, well-typed
statement s and reduction of the machine results in a value v, then the translation of s
applied to done evaluates to done applied to the translated result v.

I Corollary 11 (Evaluation).
If ∅ >` s : Int and 〈 s || • 〉 →∗ 〈 return v || • 〉
then SJ s K done →∗ done VJ v K

Although we do not have any labels generated at runtime, the CPS semantics exactly mimics
the behavior of the operational semantics, which does have them.

I Example 12. Figure 6 lists a sequence of steps of the abstract machine and the correspond-
ing sequence of steps of the translated machine states. In the example, we use a capability
which is associated to an outer handler. It illustrates how the statement under reduction
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18 Typed Continuation-Passing for Lexical Handlers

Steps in the source language:

(1) 〈 do cap@b29{ (u, k1) ⇒ k1(43) }[@3a1 :: • ](unit) ‖ #@3a1 { � } :: #@b29 { � } :: • 〉 →

(2) 〈 do cap@b29{ (u, k1) ⇒ k1(43) }[@3a1 :: • ](unit) ‖ #@3a1 { � } :: #@b29 { � } :: • ‖ • 〉 →

(3) 〈 do cap@b29{ (u, k1) ⇒ k1(43) }[•](unit) ‖ #@b29 { � } :: • ‖ #@3a1 { � } :: • 〉 →

(4) 〈 resume(#@b29 { � } :: #@3a1 { � } :: • )(43) ‖ • 〉 →

(5) 〈 resume(#@3a1 { � } :: • )(43) ‖ #@b29 { � } :: • 〉 →

(6) 〈 return 43 ‖ #@b29 { � } :: • 〉 →

(7) 〈 return 43 ‖ • 〉

Steps in the target language:

(1) (Lift ((λu. λk1. λk2. k1 43 k2) unit)) (λx. λk. k x) (λx. λk. k x) done →

(2) (λk. λj. (λk1. λk2. k1 43 k2) (λy. k y j)) (λx. λk. k x) (λx. λk. k x) done →

(3) (λk1. λk2. k1 43 k2) (λy. (λx. λk. k x) y (λx. λk. k x) ) done →

(4) (λy. (λx. λk. k x) y (λx. λk. k x)) 43 done →

(5) (λx. λk. k x) 43 (λx. λk. k x) done →

(6) (λk. k 43) (λx. λk. k x) done →

(7) (λk. k 43) done

Figure 6 Example of step-by-step simulation. The statement under reduction is highlighted in
grey , the first stack segment highlighted in blue , the second stack segment highlighted in yellow ,

and the top of the stack highlighted in red .

(highlighted in grey), the context, and the trace are translated, and how the translated term
captures the correct number of continuations and reinstalls them.

The first steps are (perform), (forward), and (handle). The evidence value @3a1 :: • is
precisely the offset we have to skip to get to the correct delimiter (Theorem 7). We translate
it to the function Lift which takes the first continuation and pushes it onto the second
continuation. In state (3), after pushing the first delimiter onto the resumption, the stack
consists of two segments. Therefore the translated term is applied to two continuations.
The first continuation contains the translated resumption as a subterm. In step (5) we
have pushed a delimiter back onto the stack and the translated term is again applied to
two continuation arguments. This rewinding is achieved by the definition of Lift and our
translation of resumptions.
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5 Related Work

We presented a CPS translation for lexical effect handlers. We first review and compare to
existing work on lexical effect handlers. Then we discuss related work on dynamic effect
handlers.

5.1 Lexical Effect Handlers

There are a number of implementations of lexical effect handlers which do not guarantee effect
safety. For example for OCaml [18], Scala [3], and Java [4]. All of these use multi-prompt
delimited control [11] under the hood, therefore their operational semantics is comparable to
our operational semantics given in Section 3. However, because they do not have an effect
system, they can generally express more programs. Of course this means that they can not
guarantee effect safety and programs may crash because no prompt with a corresponding
label was found.

There are a number of languages with lexical effect handlers and an effect system which
do guarantee effect safety [32, 5, 2]. All of these define effects as sets of effect instances a
computation might use. In our type system in Section 3 we deviate from this presentation in
two ways. Firstly, we avoid types depending on terms and introduce a fresh type-level region
variable for each term-level capability. Secondly, like in the Single Effect Calculus [12], we
require the region of each function to be a single region variable. Operationally, all of these
use some form multi-prompt delimited control, except for the open semantics, also presented
by Biernacki et al. [2], which uses reduction under binders.

Two languages with lexical effect handlers which guarantee effect safety but do not
track sets of effect instances are the ones by Brachthäuser et al. [6] and by Schuster et al.
[26]. Brachthäuser et al. have a multi-prompt semantics and rely on a second-class restriction
to guarantee effect safety. Schuster et al. use lists of answer types as effects. Their CPS
translation is very similar to ours, but their approach does not support effect polymorphism
and they do not show any operational correspondence.

5.2 Dynamic Effect Handlers

Hillerström et al. [2017, 2020] present a CPS translation for dynamic effect handlers. They
present an abstract machine and a simulation result. Their abstract machine searches for
a matching effect tag on the stack, and so do their CPS translated terms. In contrast, we
present a CPS translation for lexical effect handlers. Furthermore, our abstract machine
searches for a matching label, but our CPS translated terms do not. Our CPS translation
is similar to their curried CPS translation. They produce untyped terms, where our CPS
translation produces typed System F terms. They sketch how a typed CPS translation might
look like in Appendix B of [14], but do not present a fully worked proof of well-typedness,
which we do.

Saleh et al. [24] present a language with dynamic effect handlers where subeffect coercions
are explicit. Their goal is to use the explicit information in these coercions to optimize effectful
programs [16]. In a similar spirit, the language Λcap that we present is very explicit about
subregion evidence. While their coercions can be applied to arbitrary effectful expressions,
we pass subregioning evidence down to where effect operations are used and never coerce
statements directly. Based on results by Schuster et al. [26], we conjecture that our iterated
CPS translation produces efficient programs.

TR 2022



20 REFERENCES

Xie et al. [31] and Xie and Leijen [30] present an implementation of dynamic effect
handlers where evidence vectors are explicitly passed. Our formal treatment of the operational
semantics is inspired by their concept of evidence correspondence. Furthermore, Xie et al.
[31] introduce the property of scoped resumptions and dynamically check that it holds. In
contrast, we statically enforce this property.

6 Conclusion

We have presented a CPS translation for a typed language with lexical effect handlers. It
simulates the standard operational semantics, while targeting pure System F with neither
labels nor runtime constructs. Our translation is based on two key ingredients: firstly, passing
handler implementations instead of looking them up in the context. Secondly, interpreting
lexical effects as regions and making subregioning explicit. The effect operations supported
by Λcap must have monomorphic types. In the future, it would be interesting to extend the
approach to more advanced forms. While we believe that type-polymorphic effect operations
are a straightforward extension, effect-polymorphic effect operations or bidirectional effects
[34] could hold some interesting challenges.
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Abstract Machine Typing

∅ RJ K K ` s : τ ` K : τ

` 〈 s ‖ K 〉 ok
[Machine]

∅ RJ K K ` do h[w](v) : τ2

` K : τ τ2 RJ K K ` H : τ

` 〈 do h[w](v) ‖ K ‖ H 〉 ok
[Unwinding]

∅ ` v : τ2 τ2 RJ K K ` F :: H : τ ` K : τ

` 〈 resume(F :: H)(v) ‖ K 〉 ok
[Rewinding]

Runtime Expression Typing

u0 = w ++ u1

∅ ` w : u0 v u1
[Evidence]

Γ, x : τ1, k : τ2 →u τ u ` s : τ

∅ ` capl { (x, k) ⇒ s } : Cap (l :: u) τ1 τ2
[Capability]

τ1 ρ ` F :: H : τ2

∅ ` resume(F :: H) : τ1 →ρ τ2
[Continuation]

~ End Figblock

Stack Typing ` K : τ

` • : τ
[Exit]x : τ RJ K K ` s : τ1 ` K : τ1

` val x = �; s :: K : τ
[Frame]

` K : τ

` #l { � } :: K : τ
[Handler]

Resumption Typing τ ρ ` H : τ

τ ρ ` • : τ
[Exit] x : τ1 ρ ` s : τ0 τ ρ ` H : τ1

τ ρ ` val x = �; s :: H : τ0
[Frame]

τ l :: ρ ` H : τ0

τ ρ ` #l { � } :: H : τ0
[Handler]

Figure 7 Abstract machine typing of Λcap

A Abstract Machine and Simulation

A.1 Machine Typing

Figure 7 lists the typing rules of the abstract machine.

A.2 Machine Steps

Figure 8 lists the stepping rules of the abstract machine including regions and evidence which
are needed to prove invariants throughout execution.
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Machine Steps:

(return) 〈 return v ‖ val x = �; s :: K 〉 → 〈 s[x 7→ v] ‖ K 〉

(push) 〈 val x = s0; s ‖ K 〉 → 〈 s0 ‖ val x = �; s :: K 〉

(call) 〈 { [r ; n : γ](x : τ) at ρ ⇒ s0 }[ρ, e](v) ‖ K 〉 → 〈 s0[r 7→ ρ,n 7→ e, x 7→ v] ‖ K 〉

(try) 〈 try { [r ; n](c) ⇒ s0 } with { (x, k) ⇒ s } ‖ K 〉 → 〈 s0[r 7→ u,n 7→ w, c 7→ v] ‖ #l { � } :: K 〉
where l = generateFresh(), and u = l :: RJ K K,$
and w = l :: • , and v = capl { (x, k) ⇒ s }

(pop) 〈 return v ‖ #l { � } :: K 〉 → 〈 return v ‖ K 〉

(perform) 〈 do (capl { (x, k) ⇒ s })[e](v) ‖ K 〉 → 〈 do (capl { (x, k) ⇒ s })[ N JeK ](v) ‖ K ‖ • 〉

(unwind) 〈 do (capl { (x, k) ⇒ s })[w](v) ‖ F :: K ‖ H 〉 → 〈 do (capl { (x, k) ⇒ s })[w](v) ‖ K ‖ F :: H 〉
where F = val x = �; s

(forward) 〈 do (capl { (x, k) ⇒ s })[l ′ :: w](v) ‖ F :: K ‖ H 〉 →
〈 do (capl { (x, k) ⇒ s })[w](v) ‖ K ‖ F :: H 〉

where F = #l′ { � }, and l 6= l ′

(handle) 〈 do (capl { (x, k) ⇒ s })[•](v) ‖ F :: K ‖ H 〉 → 〈 s[x 7→ v][k 7→ j] ‖ K 〉
where F = #l { � }, and j = resume(F :: H)

(rewind) 〈 resume(F1 :: F2 :: H)(v) ‖ K 〉 → 〈 resume(F2 :: H)(v) ‖ F1 :: K 〉

(resume-1) 〈 resume(val x = �; s :: • )(v) ‖ K 〉 → 〈 s[x 7→ v] ‖ K 〉

(resume-2) 〈 resume(#l { � } :: • )(v) ‖ K 〉 → 〈 return v ‖ K 〉

Figure 8 Steps of the abstract machine.

A.3 Translation of Machine States
Figure 9 lists the translation of machine states to System F. While the translation of the source
program is straight-forward, to translate intermediate steps, we need to define additional
translation functions and auxiliary contexts.

Auxiliary Contexts
To define the translation, we add auxiliary contexts C . Contexts C are either empty •, or
an application in a larger context � v, or a binding of a special continuation variable κ in a
larger context (that is, let κ = v in �). Plugging a term into a context is straight-forward.
The case of the continuation binder performs substitution during plugging. Substitutions
always happen on the meta-level during translation and never occur in translated terms.

Translation of Machine States
The translation of execution machine states (that is, 〈 s || K 〉) plugs the translated statement
into a context which applies it to the continuation variable κ, and then into the translation
of the stack KJ K K. This will bind κ to the actual continuation. The translation of the
unwinding machine states, that is

〈 do capl{(x, k)⇒s}[w](v) || K || H 〉

plugs the unwinding term (that is, WJ w K(λk. SJsK)[x 7→ VJvK]) into an application to the
translation of the stack trace (� HJ H K), and then into the translation of the stack (KJ K K).
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Syntax of System F:

Terms
t ::= x | λx. t | Λa. t | t t | t τ | done

Contexts
C ::= • | � v :: C | let κ = v in � :: C

Plugging
Plug(t, •) = t
Plug(t, � v :: C ) = Plug(t v, C )
Plug(t, let κ = v in � :: C ) = Plug(t [κ 7→ v], C )

Translation of Machine States:
MJ 〈 s ‖ K 〉 K = Plug(SJ s K , � κ :: KJ K K)
MJ 〈 do capl{ (x, k) ⇒ s }[w](v) ‖ K ‖ H 〉 K =

Plug(WJ w K(λk. SJsK)[x 7→ VJvK ]) , � HJ H K :: KJ K K)

MJ 〈 resume(F :: H)(v) ‖ K 〉 K= Plug(HJHK VJvK , KJF :: KK)

Translation of Stacks:
KJ • K = let κ = done in � :: •
KJ val x = �; s :: K K = let κ = λx. SJ s K κ in � :: KJ K K
KJ #l { � } :: K K = let κ = λx1. λk1. k1 x1 in � :: � κ :: KJ K K

Translation of Stack Traces:
HJ • K = κ

HJ val x = �; s :: H K = HJ H K [κ 7→ λx. SJ s K κ]
HJ #l { � } :: H K = λx0. HJ H K [κ 7→ λx1. λk1. k1 x1] x0 κ

Translation of Unwinding:

WJ • Kt = t
WJ l :: w Kt = λk. λj. WJ w Kt (λx. k x j)

Translation of Evidence Values:

EJ w K = Λa. λm. WJ w Km

Translation of Runtime Values:
VJ capl { (x, k) ⇒ s } K = λx. λk. SJ s K
VJ resume(#l { � } :: H) K = HJ H K [κ 7→ λx1. λk1. k1 x1]
VJ val x = �; s :: H) K = dummy(does not occur)

Figure 9 Translation of machine states.

The translation of the stack trace contains κ free exactly once, which will be bound by the
translation of the stack. The overall term is always closed.

A.4 Proof of Simulation
To prove simulation, we need the following lemma that translation commutes with substitu-
tion:

I Lemma 13. SJ s K [x 7→ VJ v K ] = SJ s [x 7→ v] K

And mutadis mutandis for regions and evidence.
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We also need the following lemma to prove that applying a translated evidence term
produces an unwinding term.

I Lemma 14 (Perform). EJ e K τ t →∗ WJ N J e K Kt

Proof. The proof proceeds by induction on evidence terms. J

Given the above lemmas, we can prove simulation:

Proof of Theorem 10 (Simulation). The proof proceeds by case analysis of the step taken
by the abstract machine. Most of them are straight-forward, except for (perform), which
requires Lemma 14:
MJ 〈 do capl{(x, k)⇒s}[e](v) ‖ K 〉 K = by DefinitionMJ · K

Plug(SJ do capl{(x, k)⇒s}[e](v) K, � κ :: KJ K K) = by Definition SJ · K

Plug(EJ e K T Jτ2K (VJcapl{(x, k)⇒s}K VJvK), � κ :: KJ K K) = by Definition VJ · K

Plug(EJ e K T Jτ2K ((λx. λk. SJsK) VJvK), � κ :: KJ K K) → by beta reduction

Plug(EJ e K T Jτ2K ((λk. SJsK) [x 7→ VJvK ]), � κ :: KJ K K) →∗ by Lemma Perform

Plug(WJ N J e K K((λk. SJsK) [x 7→ VJvK ]), � κ :: KJ K K) = by Definition HJ · K

Plug(WJ N J e K K((λk. SJsK) [x 7→ VJvK ]), � HJ • K :: KJ K K) = by Definition MJ · K

MJ 〈 do capl{(x, k)⇒s}[ N JeK ](v) ‖ K ‖ • 〉 K

J
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