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Abstract
Regions are a useful tool for the safe and automatic management of scarce resources. Due to their
scarcity, resources are often limited in their lifetime which is associated with a certain scope. When
control flow leaves the scope, the resources are destroyed. Exceptions can non-locally exit such
scopes and it is important that resources are also destroyed in this case. Continuation-passing style
is a useful compiler intermediate language that makes control flow explicit. All calls are tail calls
and the runtime stack is not used. It can also serve as an implementation technique for control
effects like exceptions. In this case throwing an exception means jumping to a continuation which
is not the return continuation. How is it possible to offer region-based resource management and
exceptions in the same language and translate both to continuation-passing style? In this paper, we
answer this question. We present a typed language with resources and exceptions, and its translation
to continuation-passing style. The translation can be defined modularly for resources and exceptions
– the correct interaction between the two automatically arises from simple composition. We prove
that the translation preserves well-typedness and semantics.
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1 Introduction

Regions were originally introduced for the safe and automatic management of memory [28].
Since then, much research has happened to extend their usefulness for memory management
in different scenarios [13, 8, 12, 11]. Regions are also a useful tool for controlling the allocation,
release, and use of any kind of scarce resource even when considering memory to be plentiful
[18]. Resources are organized into a stack of regions which corresponds to nested scopes in
the program. Resources in a region are automatically released when control flow leaves the
corresponding scope. A type-and-region system guarantees resource safety, i.e., that there is
no access to a resource outside of its corresponding scope.

Exceptions allow for non-local exits from scopes. It is important that resources are
released not only upon normal return, but also when an exception is thrown. A type-and-
effect system statically ensures that certain error conditions do not occur when running a
program. In the case of exceptions, for example, we want to guarantee exception safety, i.e.,
every exception is eventually caught. Some work on regions explicitly caters to exceptions
[18, 13, 29, 17]. Still, the interaction between regions, exceptions, and first-class functions is
non-trivial. To the best of our knowledge region safety for a language with this combination
of features has not yet been formally established.

Continuation-passing style (CPS) is an attractive [2, 16, 7] intermediate representation
for programs. Control flow is explicit, and many program optimizations amount to simple
inlining and beta reduction. CPS can also be an implementation technique for control effects
like exceptions [16, 15, 25]. Optimization of programs using these features still amounts
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2 Region-based Resource Management in Continuation-Passing Style

to inlining and reduction. In CPS all calls are tail calls. Importantly, there is no runtime
stack that a thrown exception unwind. Instead, throwing an exception means jumping to a
non-return continuation.

A CPS translation (from a source to a target language in CPS) must of course be correct,
i.e. preserve the semantics of the source language. Ideally, the target language is also typed,
and the translation takes well-typed terms to well-typed terms. Moreover, when we translate
a source program with exceptions to CPS, well-typedness of the target term should also
entail exception safety. While there are CPS translations for exceptions, and it is translate
resource bracketing to CPS, there is not yet a single CPS translation for both features in the
same language. Moreover, it is not clear how such a combination could be typed in a way
that guarantees resource safety and exception safety at the same time.

We present an intermediate language Λρ with resources and exceptions. It has a type-
and-effect system keeping track of regions to model both: the lifetime of resources as well as
the scope of exception handlers. We define its operational semantics as an instrumented [22]
abstract machine, which manipulates a runtime stack. We prove progress (Theorem 4) and
preservation (Theorem 5) for this semantics in the proof assistant Coq. Resource safety
(Theorem 6) and exception safety (Theorem 7) follow as corollaries. To our knowledge, this
is the first proof of safety for a language with region-based resource management, exceptions,
and first-class functions.

We define a CPS translation from Λρ to System F with base types and primitive operations.
The translation takes well-typed terms to well-typed terms (Theorem 12). We implemented
the translation as a shallow embedding into the dependently typed language Idris 2. It does
not use any special runtime constructs, neither for regions nor for exceptions. The translation
is correct: translated terms simulate the abstract machine semantics step-wise (Theorem 14).
This entails resource safety and exception safety for CPS translated terms.

Our key technical idea is to understand regions as describing the runtime stack. In
the operational semantics, language constructs for resources and exceptions push freshly
generated markers onto the runtime stack. At runtime, a region stands for the concrete list of
markers on the stack. Subregioning evidence to stand for the concrete difference between two
such lists. In CPS there is no stack. Under our CPS translation, regions are answer types,
and subregioning evidence terms are answer-type coercing functions. They move from one
region to another one. This allows us to define the CPS translations of resource management
and exceptions separately while having them interact correctly.

The rest of the paper is organized as follows. In Section 2, we introduce the main ideas
behind our language Λρ. In Section 4, we formally present Λρ. We start with a base language
with type-level region tracking and term-level subregioning evidence. We gradually extend
this base language with region-based resource management and exceptions. In Section 5,
we define the CPS translation for Λρ to System F. We do so gradually, first for the base
language, then for resources, then for exceptions. In Section 6 we compare to related work
and in Section 7 we summarize the key ideas and outline future work.

2 Overview

Here, we provide an informal overview of our main ideas and the language Λρ. We start by
re-iterating how regions are used for resource management. We then introduce exceptions
and show how we translate them to CPS. Finally, we combine resources and exceptions
and demonstrate how our translation reveals information about the use of resources in the
presence of non-local exits.



Schuster, Brachthäuser, and Ostermann 3

2.1 Regions for Resources
As a first example, let us see how regions can be used to manage file handles in Λρ. Our
type system follows Fluet and Morrisett [11] and Kiselyov and Shan [18] with some minor
differences.

I Example 1. Consider the following simple example, which copies the first line of a file
"input" into a file "output" and additionally inserts a line at the beginning and a line at
the end of the output file. Both files are automatically closed and any attempt, accidental or
not, to use them after they are closed will fail.

pool { [r1](p1 : Pool r1, l1 : r1 v Top) ⇒
val out: File r1 = open(p1, "output", 0);
writeln(out, "start", 0);
pool { [r2](p2 : Pool r2, l2 : r2 v r1) ⇒

val in: File r2 = open(p2, "input", 0);
val firstLine = readln(in, 0);
writeln(out, firstLine, l2)

};
writeln(out, "end", 0);
return ()

}

We use a pool { ... } statement to create a fresh resource pool. A pool is a reference to a
list of open files. All files in this list are automatically closed when control flow leaves the
enclosed block. The pool statement introduces a region variable r1, a pool variable p1 and
subregioning evidence l1. We then open the file "output" in pool p1. In our type system,
every statement is checked in a region. The overall statement is checked in the top-level
region Top. The enclosed block is checked in region r1. When we open a file, we have to
explicitly pass evidence that the region of the pool is a subregion of the current region. In
this example, we pass the reflexivity evidence 0 : r1 v r1. We create a second pool p2
in a second region r2, which is clearly inside of r1. This fact is witnessed by the evidence
variable l2. When we write to the output file, we have to provide evidence that the file’s
region r1 is inside of the current region r2. We provide l2 : r1 v r2.

For this simple example, after applying our CPS translation and some beta reduction we get
the following straight-line code.

λk.
let p1 = createPool ();
let out = openFile p1 "output";
writeLine out "start";
let p2 = createPool ();
let in = openFile p2 "input";
let firstLine = readLine in;
writeLine out firstLine;
destroyPool p2;
writeLine out "end";
destroyPool p1;
k ()

The original progam did not contain any interesting control flow and our CPS translation
results in a sequence of primitive operations. There is no overhead for protecting resources
when no exception is thrown. Later we will see how we clean up resources when there are
exceptions. But first, let us look at our CPS translation of exceptions.

TR 2022



4 Region-based Resource Management in Continuation-Passing Style

2.2 Regions for Exception Handlers

Exceptions abort the current computation to an exception handler. An exception that is
thrown while the corresponding handler is not on the stack results in an error condition that
we statically prevent from happening. In Λρ, we use the same mechanism for resources and
exceptions and enforce exception safety in terms of regions: in order to throw to an exception
handler, we require evidence that the corresponding handler is still on the stack.

Exceptions in Λρ are lexically scoped [32, 31, 4, 5]. This style of exceptions has advantages
when reasoning about higher-order functions. Operationally, each try statement generates
a fresh marker at runtime and pushes a catch frame with this marker onto the stack. We
explicitly pass these markers as values of type Catch r. For example, consider the following
program.

I Example 2. The function safeDiv divides two numbers, but throws an exception when
the second number is zero.

def safeDiv[r](x : Int, y : Int, e : Catch r) at r {
if (y == 0) { throw(e, 0) }
else { return (x / y) }

}

In addition to the two parameters x and y, the function safeDiv receives a catch marker e.
When y is zero we throw to e. For this to be safe we need to guarantee that we only throw
to e in the dynamic extent of the corresponding exception handler. But this is the very same
problem we had with pools. So we use the very same solution: When we throw to a catch
frame of type Catch r we have to provide evidence that the current region is a subregion of
the catch’s region, in this example 0 : r v r.

The function safeDiv is region polymorphic. It abstracts over a region variable r. It is
also annotated to run in the region r. To handle the exception we use our safeDiv function
as follows.

try { [r1](e1 : Catch r1, l1 : r1 v Top) ⇒
safeDiv[r1](5, 0, e1)

} catch { return 0 }

Very much like the pool statement, the exception handler introduces a region variable r1, a
handler e1, and subregioning evidence l1. In the call to safeDiv, we instantiate the region
variable r to r1 and pass the exception handler e1. The example illustrates that we can
guarantee exception safety by the very same mechanism we use for region safety.

When we translate this program to CPS, inline the function safeDiv, and after applying
beta reduction and commuting conversions we get the following:

λk2. if (0 ≡ 0) then k2 0 else k2 (5 / 0)

When we translate programs to CPS, control flow becomes explicit. This is also true in
the presence of control effects like exceptions. Because of this, optimizing programs in CPS
amounts to beta reduction. How then can we achieve the same in the presence of resources
and exceptions?

2.3 Combining Resources and Exceptions

Consider the following simple program that mixes pools and exceptions.
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I Example 3. We install an exception handler and create two resource pools. We open a
file in the inner pool, open a file in the outer pool, and then throw an exception.

try { [r1](e1 : Catch r1, l1 : r1 v Top) ⇒
pool { [r2](p2 : Pool r2, l2 : r2 v r1) ⇒

pool { [r3](p3 : Pool r3, l3 : r3 v r2) ⇒
open(p3, "input", 0);
open(p2, "output", l3);
throw(e1, l3 ⊕ l2)

}
}

} catch { return 1 }

To open files into pools, we have to provide evidence, as before. To throw an exception to
the outer handler e1, we have to provide evidence that region r3 is inside of r1. We compose
evidence variables l3 ⊕ l2, to get evidence of type r3 v r1.

This program, after CPS translation, reduces to the following program. The exception
handler is known and will be eliminated. Again, simplifying control flow amounts to beta
reduction as usual in CPS.

λk.
let p2 = createPool ();
let p3 = createPool ();
openFile p3 "input";
openFile p2 "output";
destroyPool p3;
destroyPool p2;
k 1

In our framework, these simplifications of control flow also correctly account for proper
creation and destruction of resources. We can blindly reduce the translated program without
any extra considerations.

3 First-Class Functions

Λρ fully supports first-class functions. For example, consider the following program which
factors out a common pattern as a higher-order function.

def withFile[r0](path: String, f: [r](File r, r v r0) →r Unit) at r0 {
pool { [r1](p1: Pool r1, l1: r1 v r0) ⇒

val file = open(p1, path, 0);
f[r1](file, l1)

}
}

The function withFile is region polymorphic. It abstracts over the region r0 it can be used
in. The function f must be region-polymorphic too, because we use it under a new region
r1. We instantiate its region parameter with r1 pass evidence l1.

It would be possible to write withFile with the following signature:

withFile : [r0](path: String, f: [r](File r) →r Unit) →r0 Unit

Here, the function parameter f would not receive any evidence. This variant of withFile
would be less useful, as f could not access any resources from outside of the call-site of
withFile.

TR 2022



6 Region-based Resource Management in Continuation-Passing Style

Terms:
Statements
s ::= val x = s; s sequencing

| return e returning
| e[ρ](e) application

Expressions
e, i ::= x, f , l, ... variables

| v values
| 0 reflexivity ev.
| e ⊕ e transitivity ev.

Values
v ::= () | 0 | 1 | ... | true | ... primitives

| { [r ](x : τ) at ρ ⇒ s} closures

Types:
Types
τ ::= Int | Bool | ... primitives
| ∀[r ] (τ) →ρ τ functions
| ρ v ρ evidence

Regions
ρ ::= r region variable
| > toplevel region

Environments:
Γ ::= ∅ empty env.
| Γ, r region binding
| Γ, x : τ value binding

Names:

x, y, l ::= x | y | l ... value variables r ::= r | s | ... region variables

Figure 1 Syntax of the core of Λρ.

4 A Language with Regions, Resources, and Exceptions

In this section, we formally present Λρ and its operational semantics. We will introduce
Λρ step-by-step starting with a base language with support for type-level region tracking
but no interesting term-level features that make use of them. We then add resource pools,
exceptions, and finally consider the combination of the two. The operational semantics is
given in terms of an abstract machine that manipulates are runtime stack. In Section 5, we
present a CPS translation of Λρ, following the same incremental development.

The paper is accompanied by a mechanized formalization of Λρ and its operational
semantics in the Coq theorem prover [3], including the usual theorems of Progress (Theorem 4)
and Preservation (Theorem 5). Resource- and exception safety follow as corollaries: whenever
we use a resource (like a file) it is live (Corollary 6), and whenever we throw an exception
the corresponding handler is on the stack (Corollary 7).

Our operational semantics will push freshly generated markers onto the runtime stack. A
region is the list of concrete markers on the stack and evidence is the list of markers that is
the difference between two such lists. Although they do not play any role computationally, for
our proofs we will substitute these lists for region variables and evidence variables at runtime.
Our typing rules for runtime evidence then makes proving region safety and exception safety
possible.

4.1 Syntax

Figure 1 defines the syntax of the core of Λρ. We use fine-grain call-by-value [21] and
syntactically distinguish between statements, which can have effects, and pure expressions.

Function values (i.e., { [r ](x : τ) at ρ ⇒ s}) abstract over a list of type-level region
parameters (i.e., r), and a list of term-level parameters (i.e., x : τ). Each function is defined
to run exactly in a region ρ, but otherwise functions are unsurprising. Since our focus is
on the interaction between regions and control effects, we omit type abstraction from this
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Statement Typing

Γ
↑

ρ
↑

` s
↑

: τ
↓

Γ ρ ` s0 : τ0 Γ, x0 : τ0 ρ ` s : τ

Γ ρ ` val x0 = s0; s : τ
[Val]

Γ ` e : τ

Γ ρ ` return e : τ
[Ret]

Γ ` e0 : ∀[r ](τ) →ρ0 τ0 Γ ` e : τ [r 7→ ρ] ρ = ρ0[r 7→ ρ]
Γ ρ ` e0[ρ](e) : τ0[r 7→ ρ]

[App]

Expression Typing

Γ
↑

` e
↑

: τ
↓

Γ(x) = τ

Γ ` x : τ
[Var] Γ ` n : Int

[Lit] Γ, r , x : τ ρ ` s0 : τ0

Γ ` { [r ](x : τ) at ρ ⇒ s0 } : ∀[r ](τ) →ρ τ0
[Fun]

Γ ` 0 : ρ v ρ
[Reflexive] Γ ` e : ρ v ρ′ Γ ` e′ : ρ′ v ρ′′

Γ ` e ⊕ e′ : ρ v ρ′′
[Transitive]

Figure 2 Type system of the core of Λρ.

presentation. Our mechanization includes type polymorphism, which is orthogonal to the rest
of the calculus. We define the following short-hand notation for named function definitions:

def f [r ](x : τ) at ρ { s0 }; s .= val f = return { [r ](x : τ) at ρ ⇒ s0}; s

The list of region parameters scopes over the parameter types, the return type, the annotated
region ρ, and the body of function s. We apply functions to a list of regions ρ and a list of
arguments e.

We introduce two additional concepts: type-level regions and term-level evidence. Type-
level regions ρ are either region variables r or the top-level region >. Intuitively, the top-level
region denotes the bottom part of the runtime stack. Term-level evidence expressions are
either the empty evidence 0 witnessing reflexivity of subregioning, or the composition of
evidence e ⊕ e, witnessing the transitivity of subregioning. By convention, we use the
meta-variables f and l to stand for variables of function type and evidence type respectively,
and we use the meta-variable i to stand for expressions of evidence type.

4.2 Typing
Figure 2 defines typing of core Λρ. We type statements and expressions with different
judgement forms. While both are typed in an environment Γ containing value and region
bindings, only statements are typed in a given region ρ. Statements may perform effectful
(that is, serious in the terminology of Reynolds [23]) computation, which is only safe in
specific regions. In contrast, expressions are pure (that is, trivial) and can be evaluated
independent of any region.

TR 2022
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Syntax of the Abstract Machine:
Machine States
M ::= 〈 s ‖ K 〉

Stacks
K ::= • | F :: K

Frames
F ::= val x = �; s

Machine Steps:

(return) 〈 return e ‖ val x = �; s :: K 〉 → 〈 s[x 7→ e] ‖ K 〉

(push) 〈 val x = s0; s ‖ K 〉 → 〈 s0 ‖ val x = �; s :: K 〉

(call) 〈 { [r ](x : τ) at ρ ⇒ s0 }[ρ](e) ‖ K 〉 → 〈 s0[r 7→ ρ][x 7→ e] ‖ K 〉

Extended Syntax:
v ::= ... | w evidence value
ρ ::= ... | u runtime region

Runtime Regions and Evidence.:
w ::= • evidence values
u ::= • runtime regions

Runtime Region of Stack:
RJ · K : K → u
RJ • K = •
RJ val x = �; s :: K K = RJ K K

Evaluation of Evidence:
VJ · K : e → w
VJ 0 K = •
VJ e1 ⊕ e2 K = VJ e1 K ++ VJ e2 K
VJ w K = w

Figure 3 Abstract machine semantics of core Λρ.

Typing of Statements Rule Val types sequencing of statements. We type the two state-
ments s0 and s in the same region ρ of the compound statement. Returning a result of a
computation (rule Ret) can be typed in any region. In rule App we apply a function e0
to a list of regions ρ and to a list of arguments e. The type of e0 is a function type in a
region ρ0. The overall statement is typed in a region ρ. The premise ρ = ρ0[r 7→ ρ] requires
that, after substituting regions ρ for the region variables r both have to syntactically be the
same. Note that we do not have any implicit or explicit subtyping of function types here
or elsewhere. All region subtyping exclusively occurs through the passing of subregioning
evidence.

Typing of Expressions The typing rules for variables Var and primitives Lit are standard.
Rule Fun types functions. We type the body of the function s0 in an environment extended
with the region parameters r and value parameter types x : τ . Every function is annotated
with a region ρ that specifies exactly the region it will have to be called in. This region
ρ is also the region we type the body s0 in. The region parameters r may appear in the
parameter types, the return type, the function’s region ρ, and body s0. This allows us to
write region-polymorphic functions that can run in any region. Value parameters of evidence
type allow us to write region-polymorphic functions that are constrained to run in a subregion
that meets these constraints.

Reflexivity evidence 0 witnesses that every region is nested within itself, and evidence
e ⊕ e′ witnesses the transitivity of nesting, which is reflected in their typing rules. We
require the composition of evidence to be associative.

4.3 Operational Semantics
Figure 3 presents the operational semantics of core Λρ. A machine state 〈 s ‖ K 〉 consists
of the statement s under evaluation and the runtime stack K. For the core of Λρ, the stack
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Syntax:

Statements
s ::= ...

| pool { [r ](x, l) ⇒ s } new resource pool
| open(e, e0, i) open file
| readln(e, i) read contents

Types
τ ::= ...

| Pool ρ
| File ρ

Typing Rules:

Γ, r , x : Pool r , l : r v ρ r ` s : τ

Γ ρ ` pool { [r ](x, l) ⇒ s } : τ
[Pool]

Γ ` e : File ρ′
Γ ` i : ρ v ρ′

Γ ρ ` readln(e, i) : String
[Read]

Γ ` e : Pool ρ′ Γ ` e0 : String Γ ` i : ρ v ρ′

Γ ρ ` open(e, e0, i) : File ρ′
[Open]

Figure 4 Syntax and typing rules of resource pools.

K is a list of frames of the form val x = �; s. The reduction rules are mostly standard.
The first rule (return) returns to the next frame on the stack. The second rule (push)
focuses on s0 and pushes a frame on the stack. Finally, rule (call) performs reduction by
simultaneously substituting region arguments ρ for region variables r and trivial expressions
e for term parameters x . Region parameters, the annotated region ρ, and evidence terms are
operationally irrelevant. As already mentioned, we need them to maintain invariants in our
proofs.

The core of Λρ, as presented, does not yet contain features with interesting operational be-
havior. While we can abstract over regions, eventually all region variables will be instantiated
with the top-level region and evidence will always be the trivial evidence.

Figure 3 also defines runtime regions and evidence values in core Λρ. We extend the
syntax of values with evidence values w, and the syntax of regions with runtime regions u.
Both are empty lists • for now. In the next two sections, we will extend their syntax to be
lists for markers h. The toplevel region > is the empty list runtime region •.

To connect type-level regions ρ with the concrete runtime stack K, we define a semantic
function RJ · K, which computes the runtime region of the current stack. In core Λρ, the
only possible runtime region is the empty list. To give meaning to evidence expressions, we
define a semantic function VJ · K. Currently the only possible evidence value is the empty
list.

4.4 Resource Pools
In this subsection, we add statements for region-based resource management to Λρ. As in the
introduction, we use files as an example for resources. Figure 4 introduces three additional
statement forms, which introduce and eliminate non-trivial evidence to assert that all files
are correctly closed. The pool statement delimits a new region in which we run the enclosed
statement s. It introduces three variables, a fresh region variable r , a variable x : Pool r ,
and evidence l : r v ρ, witnessing that the fresh region r is a subregion of the outer region
ρ. The open statement receives an pool argument e, a filename e0, and an evidence argument
i : ρ v ρ′ that witnesses that the current region ρ is nested within the pool’s region ρ′.
Rule Read for readln statements is similar.

TR 2022



10 Region-based Resource Management in Continuation-Passing Style

Syntax of Frames:
F ::= ... | #poolh { � } resource pool frame

Machine Steps:
(destroy)
〈 return e ‖ #poolh { � } :: K 〉→ 〈 return e ‖ K 〉 do destroyPool(h)

(pool)
〈 pool { [r ](x, l) ⇒ s0 } ‖ K 〉 → 〈 s0[r 7→ u][x 7→ h][l 7→ w] ‖ #poolh { � } :: K 〉

do h = createPool() where u = po h :: RJ K K, and w = po h :: •

(open)
〈 open(h, e, i) ‖ K 〉 → 〈 return x ‖ K 〉 when po h in RJ K K

do x = openFile(h, e)

(read)
〈 readln(p, i) ‖ K 〉 → 〈 return x ‖ K 〉 when po h in RJ K K

do x = readLine(p) where h = p.getPool

Runtime Regions and Evidence:
h ::= @a5f | @4b2 | ... markers

w ::= ... | po h :: w evidence value

u ::= ... | po h :: u runtime region

Runtime Region of Stack:
RJ #poolh { � } :: K K = po h :: RJ K K

Figure 5 Abstract machine semantics of arena-based memory management.

Figure 5 extends the operational semantics. Frames can now be pool frames which contain
a marker h. In rule (pool), we allocate a fresh marker h and push an pool frame onto the
stack. In rule (destroy), we pop the pool frame and destroy the pool h, closing all associated
resources. Our goal is to ensure that all access to marker h happens between these two steps.

To this end, rules (open) and (read) dynamically assert that the marker h is on the current
stack K. Access to a pool that fails this test results in a stuck term. As it turns out, the
mere existence of evidence i suffices to show that the assertion always succeeds (Corollary 6).

For our proof of this fact, Figure 5 extends the syntax of runtime regions and evidence.
Runtime regions are now lists of pool markers and so are evidence values. The runtime region
of a stack K is the list of markers that have been pushed on it. We extend the function
RJ · K to extract this list. During execution, region variables r stand for runtime regions
u. In rule (pool) we substitute the runtime region po h :: RJ K K for the region variable
r and the singleton list po h :: • for the evidence variable l. Later we will see how the
typing rule for evidence values connects type-level runtime regions with the concrete runtime
region of the current stack K.

4.5 Exceptions
Figure 6 extends Λρ with two new statement forms. The try ... catch ... statement delimits
a new region in which we run the enclosed statement s0. It introduces three variables, a fresh
region variable r , a variable x : Catch r , and an evidence variable l : r v ρ, witnessing
that the fresh region r is a subregion of the outer region ρ. The throw statement receives a
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Syntax:

Statements
s ::= ...

| try { [r ](x, l) ⇒ s0 } catch { s } handling
| throw(e, i) throwing

Types
τ ::= ...

| Catch ρ τ

Typing Rules:

Γ, r , x : Catch r , l : r v ρ r ` s0 : τ

Γ ρ ` s : τ

Γ ρ ` try { [r ](x, l) ⇒ s0 } catch { s } : τ
[Try]

Γ ` e : Catch ρ′
Γ ` i : ρ v ρ′

Γ ρ ` throw(e, i) : τ
[Throw]

Figure 6 Syntax and typing rules of exceptions.

Syntax of Frames:
F ::= ... | #catchh { � } { s } catch frame

Machine Steps:
(popcatch)
〈 return e ‖ #catchh { � } { s } :: K 〉 → 〈 return e ‖ K 〉

(try)
〈 try { [r ](x, l) ⇒ s0 } catch { s } ‖ K 〉 →
〈 s0[r 7→ u][x 7→ h][l 7→ w] ‖ #catchh { � } { s } :: K 〉
do h = generateFresh() where u = ca h :: RJ K K and w = ca h :: •

(throw)
〈 throw(h, i) ‖ K 〉 → 〈 throw(h, VJiK) ‖ K 〉

(unwind)
〈 throw(h, w) ‖ val x = �; s :: K 〉 → 〈 throw(h, w) ‖ K 〉

(forward)
〈 throw(h, ca h′ :: w) ‖ #catchh′ { � } { s } :: K 〉 → 〈 throw(h, w) ‖ K 〉

where h 6= h′

(catch)
〈 throw(h, •) ‖ #catchh { � } { s } :: K 〉→ 〈 s ‖ K 〉

Runtime Regions and Evidence:
w ::= ... | ca h :: w evidence value

u ::= ... | ca h :: u runtime region

Runtime Region of Stack:
RJ #catchh { � } { s } :: K K =

ca h :: RJ K K

Figure 7 Abstract machine semantics of exceptions.

handler e to throw to, and evidence i that the handler’s region ρ′ is nested in the current
region ρ.

Figure 7 extends the operational semantics. Frames can now be catch frames with a
marker h and a catch statement s. In rule (try) we generate a fresh marker h and push a
catch frame with this marker and the catch statement onto the stack. The handler x is this
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Extended Machine Steps:

(free) 〈 throw(h, po h′ :: w) ‖ #poolh′ { � } :: K 〉 → 〈 throw(h, w) ‖ K 〉
do destroyPool(h′)

Figure 8 Abstract machine semantics of combining arenas and exceptions.

marker h. In rule (popcatch) we pop this catch frame upon normal return. In rule (throw)
we transition from normal execution to unwinding. h is a handler, and VJ i K evaluates the
evidence expression i to a list of catch markers. In rules (unwind) and (forward) we unwind
the stack frame-by-frame until we find the matching catch frame (catch). Because each
try statement generates a fresh marker at runtime, and we search for this marker during
unwinding, exceptions have generative semantics [32, 31, 5, 4].

Figure 7 extends the syntax of runtime regions and evidence. They now are lists of catch
markers. Again, evidence guarantees that unwinding never fails, i.e. the corresponding
marker is always somewhere on the stack. Remarkably, we pop elements off the evidence
value w in lock-step with popping catch frames off the stack and never get stuck in doing
so. We always find the matching catch frame exactly when the evidence value is the empty
list. The evidence value precisely reflects the list of markers between the region of the
throw statement and the region of the catch statement. Importantly, this also holds for the
combined language Λρ (Corollary 9).

4.6 Combining Resource Pools and Exceptions
When we extend the core language with both pools and exceptions, we notice that the
machine gets stuck when we would have to unwind through a pool frame. Figure 8 extends
the reduction relation with this missing case. When we unwind through a #poolh′ frame, we
destroy the pool h′. In full Λρ regions are lists where the elements are either an arena marker
or an exception marker. Evidence is, again, the same. Having to add the rule in Figure 8
shows that under our operational semantics, the two extensions are not orthogonal. We have
to explicitly consider their interaction. In Section 5, we define a CPS translation for Λρ.
Remarkably, both extensions can defined separately and the correct interaction automatically
arises from their composition. Perhaps more importantly, the resulting terms in CPS can be
reduced freely without having to consider the interaction between pools and exceptions.

4.7 Metatheory of Λρ

We started out with core Λρ only supporting regions and subregioning evidence. We then
added two extensions, pools and exceptions, first individually, then together to arrive at
the full language. Although we use resource pools for files as an example, our approach
generalizes to region-based management of any resource. Indeed, in our mechanization, we
do not model files and the pool statement only pushes and pops the fresh marker. Instead of
open and readln we have a statement check with the following typing rule:

Γ ` e : Pool ρ′ Γ ` i : ρ v ρ′ Γ ρ ` s : τ

Γ ρ ` check(e, i); s : τ
[Check]

It asserts that the given pool is on the current runtime stack, i.e. live, and crashes the
program if it is not. Otherwise it continues to execute statement s. We can safely access
resources by first performing a runtime check and then using unsafe primitive operations.
For example we would define
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Abstract Machine Typing:
∅ RJ K K ` s : τ ` K : τ

` 〈 s ‖ K 〉 ok
[Machine]

Evidence Value Typing:
u0 = w ++ u1

∅ ` w : u0 v u1
[Evidence]

Figure 9 Abstract machine typing of Λρ

open(e, e0, i) := check(e, i); openFile(e, e0)

As we will see shortly, this check never fails.

Soundness We mechanized the formalization of Λρ in the Coq theorem prover and showed
the usual theorems of progress and preservation of the stepping relation on machine states
M.

I Theorem 4 (Progress).
If ` M ok, then either M → M′ or M is of the form 〈 return e ‖ • 〉 for some expression e.

I Theorem 5 (Preservation).
If ` M ok and M → M′ then ` M′ ok.

Figure 9 presents the typing rules for the abstract machine. An abstract machine state is
well-typed when the statement s is well-typed in the concrete runtime region of the stack K.
An evidence value is well-typed when it is the difference between the two runtime regions u0
and u1.

Properties The following properties follow directly from progress and preservation. Firstly,
whenever we use a pool, it is live. The operational semantics inspects the runtime stack. But
since the check always succeeds we do not have to actually perform it.

I Corollary 6 (Resource Safety).
If 〈 open(h, e0, i) ‖ K 〉 ok, then po h in RJ K K.

Secondly, whenever we throw an exception, the corresponding handler is on the stack.
Moreover, as we have seen from the operational semantics, during the search for the correct
handler, we encounter precisely the markers that are in the evidence value.

I Corollary 7 (Effect Safety).
If 〈 throw(h, i) ‖ K 〉 ok, then ca h in RJ K K.

Thirdly, every function runs in exactly the runtime region its type requires. In other words,
the type-level region ρ will at runtime stand for the concrete runtime region of the stack this
function is called in.

I Corollary 8 (Region Correspondence).
If 〈 { [r ](x : τ) at ρ ⇒ s0 }[u](e) ‖ K 〉 ok, then ρ[r 7→ u] = RJ K K.

Finally, evidence values are exactly the difference between the two regions. This corollary is
inspired by the similarly named theorem of Xie et al. [30].

I Corollary 9 (Evidence Correspondence).
If an evidence value w has type ρ0 v ρ1, then ρ0 and ρ1 are runtime regions u0 and u1 and
u0 = w ++ u1.
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Translation of Types:
T J Int K = Int
T J r K = r
T J >K = Void

T J ∀[r ](τ) →ρ τ0 K =
∀r . T JτK → Cps T J ρ K T J τ0 K

T J ρ v ρ′ K =
∀a. Cps T J ρ′ K a → Cps T J ρ K a

Translation of Expressions:
EJ x K = x
EJ { [r ](x : τ) at ρ ⇒ s} K = Λr . λx. SJ s Kρ
EJ 0 K = Λa. λm. m
EJ e1 ⊕ e2 K = Λa. λm. EJ e1 K a (EJ e2 K a m)

Translation of Statements:
SJ val x = s0; s1 Kρ = λk. SJ s0 Kρ (λx. SJ s1 Kρ k)
SJ return e Kρ = λk. k (EJeK)
SJ e0[ρ](e) Kρ = EJe0K T J ρ K EJeK

Auxiliary Definitions:

Cps R A = (A → R) → R

Figure 10 Translation from core Λρ to System F.

Together, these corollaries make runtime evidence on the one hand and marker frames on the
stack on the other hand redundant. The unwinding can either use evidence terms, or markers
on the stack, since the two agree. The operational semantics uses both to establish this fact.
The check for arenas is redundant since it always succeeds. It only exists to establish this
fact.

We could erase evidence terms and only rely on marker frames on the stack. In the next
section, we are going to CPS where there is no stack. Therefore we will do the opposite: Erase
marker frames and purely rely on evidence terms to have the correct content at runtime. This
is possible because of the correspondence between evidence and runtime regions. Ultimately,
this allows us to prove that CPS translated terms behave exactly as the operational semantics
(Theorem 14).

5 Translation of Regions, Pools, and Exceptions to CPS

We now present the translation of Λρ into System F (with file primitives) in CPS. As a
result of the translation, the stack K becomes an evaluation context [9], regions become
answer types, and evidence terms become answer-type coercions. As before, we will define
the translations of core Λρ and the two extensions with file pools and exceptions step-by-
step. Our translation can serve as a compilation technique for languages with control
effects and resources into any language that supports first-class functions, making it widely
applicable. Moreover, as demonstrated by Schuster et al. [25], modeling control effects
with CPS can enable compile-time optimizations for significant performance improvements.
We implemented the CPS translation of Λρ as a shallow embedding in Idris 2 [6]. The
implementation is attached as supplementary material.

5.1 Translation of Core Λρ

Figure 10 defines the translation of core Λρ to System F. Our translation targets one particular
variant of CPS, called iterated CPS [10, 24]. Every stack segment, delimited by a marker, is
represented by its own continuation argument. That is, in iterated CPS, functions do not
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Extended Translation Rules:
T J Pool ρ K = PrimPool
T J File ρ K = PrimFile

SJ pool { [r ](x, l) ⇒ s0 } Kρ =
RunPool (λh. (Λr . λx. λl. SJ s0 Kr) (T J ρ K) h (LiftPool h))

SJ open(e, e0, i) Kρ = λk. k (openFile EJeK EJe0K)
SJ readln(e, i) Kρ = λk. k (readLine EJeK)

Auxiliary Definitions:

RunPool : (PrimPool → Cps R A) → Cps R A
RunPool = λm. λk. let h = createPool (); m h (λx. destroyPool h; k x)

LiftPool h : ∀a. Cps R a → Cps R a
LiftPool h = Λa. λm. λk. destroyPool h; m k

Figure 11 Translation of Λρ with resource pools.

receive one but potentially multiple continuations. This will only become relevant in the
presence of exceptions (Section 5.3).

Translation of Types

Base types, such as Int are left unchanged by the translation. We translate region variables to
type variables in System F and the toplevel region to the empty type Void. The translation on
types shows that the iterated CPS translation is (so far) very similar to the traditional CPS
translation. In particular, the auxiliary meta-definition Cps R A is defined as the familiar
type (A →R) → R of computations in CPS with return type A and answer type R. Evidence
terms are functions between effectful computations, as can be seen from the translation of
evidence types.

Translation of Terms

As usual in CPS, we translate sequencing of statements to push a frame onto the current
continuation k, that is, the continuation first runs s1 and then continues with k. Return
statements are translated to calls to the current continuation. Again, viewing continuations
as stacks, this is in accordance with the operational semantics given in Section 4.3. In
general, statements with return type τ that have to be run in a region ρ are translated to
terms of type Cps T JρK T JτK. This can for instance be seen in the translation of function
types. We translate regions to answer types. Region abstractions are translated to type
abstractions and region polymorphic functions have a polymorphic answer type. We translate
evidence expressions to functions that lift a computation to run in a different region. The
reflexivity evidence is translated to the polymorphic identity function, and transitivity of
evidence amounts to function composition.

In the remainder of this section, we present the rest of the translation of our language
with pools and exceptions Λρ. Later, we show that the translated code in CPS simulates the
operational semantics given in Section 4.
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16 Region-based Resource Management in Continuation-Passing Style

5.2 Resource Pools
In Figure 4, we have seen the definition of Λρ with resources pools. Figure 11 defines the
translation to CPS. As we have seen in Section 4.7, we do not need any runtime checks to
prevent markers and files from being used outside of their region. Indeed, in CPS there is no
stack, which we could check for markers.

The pool statement creates a fresh resource pool. The translation instantiates r with the
outer answer type T J ρ K. When control leaves the enclosed block, the pool is destroyed. In its
translation we use the auxiliary meta function RunPool. It binds the current continuation
k and creates a fresh pool h. We run the given computation m with h and a continuation
where we push a frame that destroys the pool onto the current continuation k. This ensures
that we destroys the pool when we return normally from the enclosed block.

Evidence terms are functions LiftPool h that destroy pool h. Our types make sure
that we evaluate the evidence if-and-only-if we non-locally leave the body of the pool. In
Section 4.4, evidence was a list of pools. Here, evidence still contains a list of pools, but this
list is hidden in the closure environment of the evidence. Evidence composition conceptually
concatenates these lists.

The open statement opens a file and registers it in the pool. The readln statement uses
a primitive to read from a file. We require evidence that the pool is live, i.e. on the runtime
stack, but do not have to actually use it. As we have seen in Section 4.7 its existence is
enough to assert that accessing the file is safe.

I Example 10. Let us consider a simplified version of the motivating example (Section
2.1). The example on the left translates to the term in System F on the right. It has type
Cps Void Int.

pool {
[r1](p1: Pool r1, l1: r1 v T) ⇒

val f = open(p1, "input", 0);
return 0

}

λk.
let h = createPool ();
(Λr1. λp1. λl1. λk1.

let f = openFile p1 "input";
k1 0) Void h

(Λa. λm. λk. destroyPool h; m k)
(λx. destroyPool h; k x)

This term can be normalized to the following:

λk. let h = createPool (); let f = openFile h "input"; destroyPool h; k 0

5.3 Exceptions
In this subsection, we present the translation of exceptions. Whereas in the operational
semantics (Section 4.5) we have divided the stack into regions with markers, we now have
multiple stacks, i.e. continuations. We have seen that evidence terms contained exactly the
list of markers we have to unwind when we throw to a handler. Now we take advantage of this
fact and let the evidence be the unwinding action itself. Figure 12 presents the translation
of exceptions. It is different from the translation to double-barreled CPS from Kennedy [16],
where functions only ever get exactly two continuations. Under our translation to iterated
CPS functions can receive any number of continuations.

To support aborting the computation, we instantiate the answer type r of the translated
body s0 to be the type Cps T JρK T JτK. This adds another layer of CPS and one additional
(curried) continuation argument. In the translation of the try ... catch ... statement, we use
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Extended Translation Rules:
T J Catch ρ K = Cps T J ρ K Void

SJ try { [r ](x, l) ⇒ s0 } catch { s } Kρ =
RunCps ((Λr . λx. λl. SJ s0 Kr) (Cps T J ρ K T J τ K) (λk. SJ s Kρ) (LiftCps))

SJ throw(e, i) Kρ = EJiK Void EJeK

Auxiliary Definitions:

RunCps : Cps (Cps R A) A → Cps R A
RunCps = λm. m (λx. λk. k x)

LiftCps : ∀a. Cps R a → Cps (Cps R R′) a
LiftCps = Λa. λm. λk. λj. m (λx. k x j)

Figure 12 Translation of Λρ with exceptions.

RunCps. It runs the given computation m with an additional continuation which is initially
empty. The evidence l lifts the given computation from the inner region to the outer region.
It will be bound to LiftCps which pushes the current continuation onto the next one.

A Catch ρ is a CPS expression that aborts the computation. That is, the handler
(λk. SJ s Kρ) discards the current continuation k. In the translation of statement throw(e, i),
we call the provided evidence i and then the handler e. Running the evidence lifts the handler
into the correct region, making it compatible with the current answer type. It is safe for the
handler to discard the continuation k, since all cleanup actions contained in k are run by the
evidence.

I Example 11. Let us consider the example from Section 2.2. The example on the left
translates to the resulting term of type Cps Void Int on the right.

try { [r1](e1 : Catch r1, l1 : r1 v T) ⇒
safeDiv[r1](5, 0, e1)

} catch {
return 0

}

(Λr1. λe1. λl1.
safeDiv r1 5 0 e1

) (Cps Void Int)
(λk1. λk2. k2 0)
(Λa. λm. λk. λj. m (λx. k x j))
(λx. λk. k x)

The resulting System F term can be beta reduced to:
λk2. safeDiv (Cps Void Int) 5 0 (λk1. λk2. k2 0) (λx. λk. k x) k2

We instantiate the answer type r of safeDiv with r1, which itself is instantiated to
Cps Void Int, adding one layer of continuations. The return type is Cps (Cps Void Int) Int
and our program receives two continuations. To abort, the exception handler discards the
first (i.e., k1) and returns 0 to the second (k2).

5.4 Combining Resource Pools and Exceptions
First of all, let us briefly note that we translate well-typed programs in full Λρ to well-typed
programs in System F.

I Theorem 12 (Well-typedness of Translated Terms).
If Γ ρ ` s : τ , then T J Γ K ` SJsKρ : (T J τ K → T J ρ K) → T J ρ K

Proof. Straightforward induction over the typing derivation. J
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18 Region-based Resource Management in Continuation-Passing Style

The translation of exception handlers in Section 5.3 automatically interacts correctly with
the evidence terms we have defined for resource pools in Section 5.2: We clear a pool exactly
when an exception is thrown across it. This is because we have chosen the translation of
evidence to be a concrete computation that moves from one region to another one.

I Example 13. The following is an extended example where we combine resource pools and
exceptions in a more complicated way. The program splits a large input file into smaller files
of 100 lines each.

try { [r1](stop : Catch r1, l1 : r1 v Top) ⇒
withFile[r1]("input", { [r2](in: File r2, l2 : r2 v r1) ⇒

def copyFile(target : String) at r2 {
withFile[r2](target, { [r3](out: File r3, l3 : r3 v r2) ⇒

def copyLine() at r3 {
if (isEOF(in, l3)) { throw(stop, l3 ⊕ l2) }
else { writeln(out, readln(in, l3), 0) }

};
def innerLoop(toCopy : Int) at r3 {

if (toCopy > 0) { copyLine(); innerLoop(toCopy - 1) }
};
innerLoop(100)

})
};
def loop(n : Int) at r2 { copyFile("output" ++ n); loop(n + 1) };
loop(0)

})
} catch { return () }

When we encounter the end of the input file, we simply throw an exception to terminate
the program. We can be confident that all resources will be properly cleaned up and so
fearlessly use exceptions to structure control flow. The outer loop, for example never returns.
It is terminated by throwing an exception. This program, after CPS translation, manually
applying contification [16], and beta reduction, reduces to the code in Figure 13.

Our CPS translation of both regions and control enables aggressive optimization. For
example, at the end of the input file, we immediately destroy both pools and return. Since
we only apply well-known optimizations on functional programs, we can be certain of their
correctness without having to reason explicitly about resources nor control effects nor their
combination. The overall correctness of the optimized result rests on the correctness of our
CPS translation.

5.5 Simulation of the Operational Semantics by the CPS translation

In Section 4, we defined an operational semantics for Λρ. In this section we defined a CPS
translation for Λρ. We now show that the two behave the same. This entails that the
operational properties from Section 4 carry over to the CPS translation and that optimization
via beta reduction is sound. To show preservation of semantics, we translate statements to
terms and stacks to evaluation contexts in System F. We define the translationMJ · K of
machine states as the plugging of the translation of the statement into the translation of the
stack. The translation given in an Appendix which is attached as supplementary material.

We show that for each step the machine takes, there is a corresponding (possibly empty)
sequence of steps between the translated terms.
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λk.
let p2 = createPool ();
let in = openFile p2 "input";
let rec loop n = (λk1.

let p3 = createPool ();
let out = openFile p3 ("output" ++ n);
let rec innerLoop toCopy = (λk2.

if (toCopy > 0)
then if isEOF(in)
then destroyPool p3; destroyPool p2; (λk4. k4 0)
else let line = readLine in; writeLine out line; innerLoop (toCopy − 1)

else destroyPool p3; loop (n + 1)
);
innerLoop 100

);
loop 0 k

Figure 13 Result of translating Example 13 to CPS.

I Theorem 14 (Simulation).
If M → M′, thenMJ M K →∗ MJ M′ K.

Proof. By considering each case of the stepping relation. The (throw) step needs its own
lemma, which we show by induction on possible evidence expressions. J

Since for simulation we are only interested in operational behavior, we target the untyped
lambda calculus (with primitives for file management) instead of System F. The translation of
statements is the same as SJ s Kρ in Figures 10, 11, and 12, but we erase all type annotations,
type abstractions, and type applications. There is no harm in doing so, since our target is in
CPS where the evaluation order is explicit.

While the operational semantics given in Section 4 discards frames during unwinding,
for our proof of simulation we have to retain them. We do so in a third component of the
machine state 〈 throw(h, w) ‖ K ‖ H 〉: the stack trace H. This is necessary because the
CPS translation discards the whole continuation in one step, while the operational semantics
slowly unwinds the stack frame-by-frame.

We translate the empty stack to a special primitive function done, which will return the
overall result of the program. It is called exactly once, when the machine is in its final state
and we return to the empty stack.

I Example 15. Pools are created and destroyed exactly when they would be in the operational
semantics. As an illustration, consider the following sequence of machine steps where we
unwind a pool frame:

〈 throw(h1, (po h2 :: • )) ‖ #poolh2
{ � } :: #catchh1 { � } { return 1 } :: • 〉 →

〈 throw(h1, (po h2 :: • )) ‖ #poolh2
{ � } :: #catchh1 { � } { return 1 } :: • ‖ • 〉 →

〈 throw(h1, •) ‖ #catchh1 { � } { return 1 } :: • ‖ #poolh2
{ � } :: • 〉 →

〈 return 1 ‖ • 〉

The first step (throw) goes from normal execution to the unwinding state which accumulates
frames in its third component. The next two steps are (free) and (catch). In CPS, we can
observe the same program trace:
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((LiftPool h2) (λk1. λk2. k2 1)) (λx. destroyPool h2; (λx. λk. k x) x) done →

(λk. destroyPool h2; (λk1. λk2. k2 1) k) (λx. destroyPool h2; (λx. λk. k x) x) done →

(λk1. λk2. k2 1) (λx. destroyPool h2; (λx. λk. k x) x) done →

(λk2. k2 1) done

I Example 16. Although we do not have any markers generated at runtime, the CPS
translation exactly mimics the behavior of the operational semantics, which does have them.
Consider another example, where we throw an exception to an outer handler. The steps are
(throw), (forward), and (catch).

〈 throw(h1, (h2 :: • )) ‖ #catchh2 { � } { return 2 } :: #catchh1 { � } { return 1 } :: • 〉 →

〈 throw(h1, (h2 :: • )) ‖ #catchh2 { � } { return 2 } :: #catchh1 { � } { return 1 } :: • ‖ • 〉 →

〈 throw(h1, •) ‖ #catchh1 { � } { return 1 } :: • ‖ #catchh2 { � } { return 2 } :: • 〉 →

〈 return 1 ‖ • 〉

In CPS, we start out with three continuations, then we push the first one onto the second
one, then the exception handler discards both in one step:

(LiftCps (λk1. λk2. k2 1)) (λx. λk. k x) (λx. λk. k x) done →

(λk. λj. (λk1. λk2. k2 1) (λy. k y j)) (λx. λk. k x) (λx. λk. k x) done →

(λk1. λk2. k2 1) (λy. (λx. λk. k x) y (λx. λk. k x)) done →

(λk2. k2 1) done

The CPS translation exhibits the same behavior as the operational semantics. It simulates
the generative semantics of exceptions. Remarkably, it does not need any runtime support
for markers on the stack to do so. Indeed, in CPS there is no stack!

6 Related Work

Out of the huge body of work on regions, the one most closely related, and indeed which
has been the basis of our work, is [18], which in turn is based on [11]. Kiselyov and Shan
provide a library for region-based resource management in Haskell. They demonstrate how
types, regions, and subregioning evidence are inferred, which we do not discuss. They deal
with builtin Haskell exceptions, but leave a formal proof to future work. We go further, and
add exceptions as a language feature, and prove region- and exception safety. Moreover, we
present a CPS translation of these features.

Crary et al. [8] present a language with dynamic regions, where regions do not have to
be nested, resource access is safe, but resource cleanup is not automatic but explicit. Their
language is presented in CPS. Indeed, to quote Fluet et al. [12]: “Dynamic regions are not
restricted to LIFO lifetimes and can be treated as first-class objects. They are particularly
well suited for iterative computations, CPS-based computations, and event-based servers
where lexical regions do not suffice.” We present a CPS translation of lexical regions where
resources are automatically destroyed, even when an exception is thrown.

Clearly also related is the line of work on monadic encapsulation of state [19, 22, 26]. The
most recent work in this line [27] presents a mechanized proof of a number of equivalences in
the presence of encapsulated mutable state. We merely prove that references are not used
outside of their region, but do so in the presence of exceptions.

Our CPS translation of exceptions is closely related to the one presented by Schuster
et al. [25]. However, they do not support effect-polymorphic functions. Our translation to
System F is similar to the one for effect handlers sketched in Appendix B of [14].
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Kiselyov and Ishii [17] present a Haskell library for effect handlers based on a variant
of the free monad in Haskell. Their library supports user-defined effects and handlers and
they provide a range of pre-defined effects like exceptions, non-determinism, and state. They
also discuss a region effect for safe and automatic allocation and disposal of resources, which
correctly works in the presence of the exception effect. Other effects, like non-determinism, are
explicitly ruled out by the type system when they would be used across a resource delimiter.
They reify the structure of the program as a free monad and then write interpreters over this
structure, whereas we translate programs to CPS. Moreover we provide a proof of region-
and exception safety, which is out of scope of their work.

Leijen [20] reports on an extension of the programming language Koka with support for
resources and finalization. They support general effect handlers, while we merely discuss
the special case of exceptions. Their approach requires sophisticated modification of the
language runtime, whereas our approach can be explained as a translation to pure System F.
They allow for more complex finalization patterns, where users explicitly run the finalizers of
a resumption. This is to avoid running finalizers on linearly used resumptions, a problem
that we completely side-step by only discussing exceptions.

Ahman and Bauer [1] present an approach to resources management: Runners. They
guarantee that cleanup actions are run exactly once. We offer the same guarantee. We present
an operational semantics that relates resource management to the stack and a translation
of programs to CPS. Their denotational semantics translates programs to essentially a free
monad.

7 Conclusion

We presented Λρ, a language with first-class function, regions, resources, and exceptions.
Its type system guarantees safe access to resources and safe use of exceptions. We then
presented a CPS translation that preserves these guarantees.

We view regions as describing runtime stacks. This view is very much in line with recent
work on effect handlers. One does wonder if our approach scales to more general control
effects, which do not discard the current continuation, and perhaps even uses it multiple
times. This is the subject of ongoing investigation.
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Syntax of Lambda Calculus:

Terms
t ::= x | λx. t | t t

Contexts
C ::= • | � v :: C | let κ = v in � :: C

Plugging
plug(t, •) = t
plug(t, � v :: C ) = plug(t v, C )
plug(t, let κ = v in � :: C ) = plug(t [κ 7→ v], C )

Syntax of Stack Traces:

H ::= • | F :: H

Syntax of Machine States:

M ::= 〈 s ‖ K 〉 execution
| 〈 throw(h, w) ‖ K ‖ H 〉 unwinding

Translation of Machine States:
MJ 〈 s ‖ K 〉 K = plug(SJ s K , � κ :: KJ K K)
MJ 〈 throw(h, w) ‖ K ‖ H 〉 K = plug(WJ w KEJ h K , � HJ H K :: KJ K K)

Translation of Stacks:
KJ • K = let κ = done in � :: •
KJ val x = �; s :: K K = let κ = λx. SJ s K κ in � :: KJ K K
KJ #poolh { � } :: K K = let κ = λx. destroyPool h; κ x in � :: KJ K K
KJ #catchh { � } { s } :: K K = let κ = λx. λk. k x in � :: � κ :: KJ K K

Translation of Stack Traces:
HJ • K = κ

HJ val x = �; s :: H K = HJ H K [κ 7→ λx. SJ s K κ]
HJ #poolh { � } :: H K = HJ H K [κ 7→ λx. destroyPool h; κ x]
HJ #catchh { � } { s } :: HK = λy. HJ H K [κ 7→ λx. λk. k x] y κ

Translation of Unwinding:

WJ • Kt = t
WJ po h :: w Kt = λk. destroyPool h; WJ w Kt k
WJ ca h :: w Kt = λk. λj. WJ w Kt (λx. k x j)

Translation of Evidence values:

EJ w K = λm. WJ w Km

Translation of Handlers:

EJ h K = λk. SJ s K where #catchh { � } { s } in K

Figure 14 Translation of machine states.
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A Abstract Machine and Simulation

A.1 Translation of Machine States
Figure 14 lists the translation of machine states to untyped lambda calculus. While the
translation of the source program is straight-forward, to translate intermediate steps, we
need to define additional translation functions and auxiliary contexts.

Auxiliary Contexts
To define the translation, we add auxiliary contexts C . Contexts C are either empty •, or
an application in a larger context � v, or a binding of a special continuation variable κ in a
larger context (that is, let κ = v in �). Plugging a term into a context is straight-forward.
The case of the continuation binder performs substitution.

Translation of Machine States
The translation of execution machine states (that is, 〈 s || K 〉) plugs the translated statement
into a context which applies it to the continuation variable κ, and then into the translation
of the stack KJ K K. This will bind κ to the actual continuation. The translation of the
unwinding machine states (that is, 〈 throw(h, w) || K || H 〉) plugs the unwinding term (that
is, WJ w KEJ h K) into an application to the translation of the stack trace (� HJ H K), and
then into the translation of the stack (KJ K K). The translation of the stack trace contains κ
free exactly once, which will be bound by the translation of the stack. The overall term is
always closed.

Proof of Simulation
To prove simulation, we need the following lemma that translation commutes with substitu-
tion:

I Lemma 17. SJ s K [x 7→ EJ e K ] = SJ s [x 7→ e] K

We also need the following lemma to show that applying a translated evidence term produces
an unwinding term.

I Lemma 18 (Unwinding). EJ i K t →∗ WJ VJ i K Kt

Proof. The proof proceeds by induction on evidence expressions. J

Given the above lemmas, we can show simulation:

Proof of Theorem 14 (Simulation). The proof proceeds by case analysis of the step taken
by the abstract machine. Most of them are straight-forward, except for (throw), which
requires Lemma 18:

MJ 〈 throw(h, i) ‖ K 〉 K = by Definition MJ · K

plug(SJ throw(h, i) K, � κ :: KJ K K) = by Definition SJ · K

plug(EJ i K EJ h K, � κ :: KJ K K) →∗ by Lemma Unwinding

plug(WJ VJ i K KEJ h K, � κ :: KJ K K) = by Definition HJ · K

plug(WJ VJ i K KEJ h K, � HJ • K :: KJ K K) = by Definition MJ · K

MJ 〈 throw(h, VJ i K) ‖ K ‖ • 〉 K

J
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Stack Typing:
` K
↑

: τ
↑

` • : Int
[Exit]

x : τ RJ K K ` s : τ1 ` K : τ1

` val x = �; s :: K : τ
[Frame]

` K : τ

` #poolh { � } :: K : τ
[#Pool]

∅ RJ K K ` s : τ ` K : τ

` #catchh { � } { s } :: K : τ
[#Catch]

Figure 15 Stack typing of Λρ

A.2 Abstract Machine Typing
Showing Preservation (Theorem 5) requires typing of stacks. Figure 15 lists the corresponding
typing rules.
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