
All About That Stack: A Unified Treatment of
Regions and Control Effects
Philipp Schuster
University of Tübingen, Germany

Jonathan Immanuel Brachthäuser
University of Tübingen, Germany

Klaus Ostermann
University of Tübingen, Germany

Abstract
Ever since the inception of Algol have programming language researchers sought good abstractions
to inspect and manipulate stacks while maintaining basic invariants of program behavior. These
abstractions range from procedure calls and block structure to region-based resource management
and control effects. While all these abstractions are useful and well-designed individually, their
combination and interaction is an open issue. We present a conceptual framework with a novel
form of stack abstraction, in which stacks are decomposed into regions, moves between stacks are
expressed as control effects, and relationships between regions are represented with subregioning
evidence. We demonstrate and prove that these abstractions are powerful enough to express and
combine region-based resource management and control effect while guaranteeing region and effect
safety invariants. We also discuss an implementation by means of a compilation to System F and
validate its utility by means of several standard examples.

First Published April, 30th 2021
URL https://se.informatik.uni-tuebingen.de/publications/schuster21stack

1 Introduction

Regions are a useful concept in programming languages for the safe and automatic manage-
ment of resources [48]. Resources are organized into a stack of regions and automatically
released when control flow leaves the part of the program where a region is live. Control
effects, like for example exceptions or more general control operators (such as shift / reset [13]
or algebraic effect handlers [41]), present a challenge for region-based resource management,
because they allow for non-local transfer of control.

Runtime Stack Regions

Control
Effects Subregioning

Evidence

ρ2 v ρ1ρ2

ρ1

Figure 1 Illustration of the core concepts re-
gions of the stack (i.e., ρ1 and ρ2), control flow
transfer via control effects, and evidence (i.e.,
ρ2 v ρ1) between regions.

While some work [31, 22, 49, 30] men-
tions compatibility with exceptions, a formal
argument for the correct interaction between
region-based resource management and con-
trol effects is rarely given.

In this paper we present a conceptual
framework that uniformly accommodates ex-
isting use-cases of regions as well as different
control effects. Our framework does not re-
solve all problematic interactions between re-
source management and control effects, but
it serves as a tool to uniformly reason about
both domains. Our unified treatment is “all
about that stack” . We understand regions,
control effects, and subregioning evidence by
their connection to the runtime stack, as
illustrated in Figure 1, which we discuss in detail in the following section.

Philipp Schuster, Jonathan Immanuel Brachthäuser, and Klaus Ostermann. “All About That Stack: A Unified
Treatment of Regions and Control Effects”. Technical Report. 2021. University of Tübingen, Germany.

https://se.informatik.uni-tuebingen.de/publications/schuster21stack

2 All About That Stack

One example for the interaction between resources and control effects are finalizers. What
should happen when finalization itself throws an exception during unwinding? The behavior
varies among programming languages. Our framework helps us to not only discuss which
semantics is appropriate in this case, but also to argue why this behavior is safe.

1.1 Overview
The rest of the paper is organized as follows. In Section 2, we introduce the main ideas
behind our conceptual framework by studying two different language features and their
interaction: arena based memory-management and exceptions. In Section 3, we present
a base language Λρ with type-level region tracking and term-level subregioning evidence.
The formulation of this base calculus is parametrized over the semantic interpretation of
both regions and subregioning evidence. We extend this base language with arena-based
memory management and exceptions. We then present an operational semantics that formally
establishes the connection between type-level regions and the concrete runtime stack during
execution. In Section 4, we define a denotational semantics for the same language as a
translation to System F in continuation-passing style. To evaluate the applicability of our
conceptual framework, in subsequent sections we extend the base calculus Λρ with more
interesting control constructs, like operators for delimited control and effect handlers, as
well as more interesting constructs for dealing with resources, like backtrackable mutable
state and dynamic wind. Our unified treatment of effects and regions puts us in a unique
position to discuss these features and their interaction in the same language.

1.2 Contributions
In particular, this paper makes the following contributions:

A conceptual framework of regions and subregioning evidence, allowing us to perform an
in-depth study of the interaction of region-based resource management and control effects
in a type- and effect-safe language Λρ. Soundness proofs of Λρ are mechanized in Coq.
An operational semantics and theorems of correspondence that connect type-level regions
and term-level subregioning evidence with run-time properties during evaluation (Corol-
laries 3.3 and 3.4). Together these theorems entail that we do not need special language
runtime support for many region-related language features.
A denotational semantics of Λρ in terms of an iterated CPS translation where regions
are answer types and evidence terms are answer-type coercions. We present several case
studies that instantiate our conceptual framework and discuss non-trivial interactions
between different region-related language features. We specify the semantics of those
features without adding special runtime support or changing the denotation of regions or
evidence.
The translations to CPS have been implemented as a shallow embedding into the
dependently-typed language Idris, which shows that they take well-typed terms to
well-typed terms in System F. All examples given in the paper type check and evaluate
to the expected result.

2 Main Ideas

As already mentioned, our unified treatment is “all about that stack” and that we understand
regions, control effects, and subregioning evidence by their connection to the runtime stack,
as illustrated in Figure 1. Let us consider each of the three concepts in turn.

Schuster, Brachthäuser, and Ostermann 3

Regions At the heart of this unified treatment lies our understanding of what a region
is. We shift the perspective and instead of considering a stack of regions [47], we consider
regions of the stack. That is, where most literature on region-based memory management
sees a region as a part of the store (i.e., a “region of memory”), we understand a region as
part of the runtime stack. While other approaches track where values are stored, we rather
track where computations are run. Importantly, in this paper with stack we refer to the
runtime stack and not to a way of organizing memory.

Control Effects While regions denote particular parts of the runtime stack, control effects
(like exceptions) move between stack segments. As we will see in this section, unifying the
treatment of regions and control effects, we rephrase the problem of effect safety as a problem
of region safety, and use the same type-level machinery to guarantee both. This understanding
of effect safety is very much in line with recent work on effect handlers [52, 51, 4, 9].

Subregioning Evidence Since they denote parts of the runtime stack, regions are naturally
nested. To witness this nesting, we introduce explicit term-level evidence [20]. There
are two important aspects to our notion of subregioning evidence, corresponding to their
static and dynamic interpretation. Statically, evidence of type ρ2 v ρ1 witnesses the fact
that region ρ2 is nested within region ρ1, allowing us to guarantee region and effect safety.
Importantly, evidence also has a runtime interpretation: dynamically, evidence of the type
ρ2 v ρ1 denotes the difference between the two regions ρ2 and ρ1. We assign meaning to
this difference and equip evidence with computational content describing what it means for
program execution to move from one region of the stack to another region of the stack. In
their work on monadic regions, Fluet and Morrisett [20] incorporate a very similar form of
subregioning, envisioning that

[. . .] we can imagine a scheme in which this primitive evidence is abstract and we
provide additional operations for combining evidence [. . .] – Fluet and Morrisett [20,
p. 106]

In this paper, we do exactly that. In the remainder, we will encounter different semantic
interpretations of this “difference”. The following subsections use arena allocation and
exceptions as examples to make these ideas more concrete.

2.1 Arena-based Memory Management
As a first example, let us see how region-based resource management can be expressed within
our framework. We use memory management as an example. Resources other than memory,
for example file handles [31], would be treated similarly. Our type system follows Fluet and
Morrisett [20]. What is new is our understanding what a region is.

An arena is a block of memory that allows for the allocation of many small objects into
it. While we use the term arena, other terminology such as pool and region is also in use. In
alignment with our understanding of regions, arenas are tied to the runtime stack: they have
to be allocated and deallocated in a last-in-first-out way.

To make arena-based memory management safe, we have to ensure that we only allocate
into an arena while it is still live and that we only read from a pointer into an arena which is
still live. An arena is live, when it is in the region which describes the current runtime stack.
To understand this intuitively, consider the following example.

TR 2021

4 All About That Stack

I Example 1. In this example, we create a fresh arena. Operationally, the arena { ... }
statement will allocate a fresh arena, and deallocate it after control flow leaves the enclosed
block. It introduces a region variable r1, an arena a1 and subregioning evidence l1. In our
type system, every statement is checked in a region. The enclosed block is checked in region
r1.

arena { [r1](a1 : Arena r1 A, l1 : r1 v T) ⇒
val ptr = alloc(a1, aValue, 0);
arena { [r2](a2 : Arena r2 (A × A), l2 : r2 v r1) ⇒

val pair = alloc(a2, (load(ptr, l2), load(ptr, l2)), 0);
return pair // does not type check

}
}

We then allocate a value aValue into the arena a1. To allocate into the arena a1, we
have to provide evidence that the arena’s region is nested inside of the current region, i.e.
that r1 v r1. We provide the reflexivity evidence 0. The resulting pointer ptr has type
Ptr r1 A.

We then create a second arena a2 in a second region r2 which is clearly inside of r1. This
fact is witnessed by the evidence variable l2. We allocate a pair into a2. To load from the
pointer ptr, we have to provide evidence that the pointer’s region is inside of the current
region, i.e. that r2 v r1. We provide the evidence variable l2. The allocated pair pair has
type Ptr r2 (A × A). This pointer shall not be used outside of region r2. Our type system
prevents pair from being returned from the block. At the same, it would be fine to return
ptr from the inner region r2, but not from the outer region r1.

Meaning of Regions and Evidence In the case of arenas, a region is a concrete list of live
arenas. The top-level region is the empty list. When we run this example, we allocate a fresh
arena a1. Region r1 stands for the singleton list containing just a1. Then we allocate a second
arena, a2. Region r2 stands for the two-element list containing a2 and a1. Subregioning
evidence also is a list of arenas. It is the difference between the two lists of arenas that the
regions stand for. In this example l2 : r2 v r1 is the singleton list containing a2.

2.2 Exception Handling
Exceptions abort the current computation to an exception handler. An exception that is
thrown while the corresponding handler is not on the stack results in a error condition that
we want to prevent statically. Within our framework, we can phrase exception safety in
terms of regions: in order to throw to an exception handler, we require evidence that the
corresponding handler is still on the runtime stack. For example, consider the following
program.

I Example 2. The function safeDiv divides two numbers, but throws an exception when
the second number is zero.

def safeDiv[r](x : Int, y : Int, e : Handler r) at r {
if (y == 0) { throw(e, 0) }
else { return (x / y) }

}

We follow Zhang et al. [53] and Brachthäuser et al. [9] and explicitly pass exception handlers.
That is, in addition to the two parameters x and y, the function safeDiv receives an exception

Schuster, Brachthäuser, and Ostermann 5

handler e. When y is zero we throw to this handler e. For this to be safe we need to guarantee
that this handler is on the stack. But this is the very same problem we had with arenas. So
we use the very same solution: When we throw to a handler of type Handler r we have
to provide evidence that the current region is a subregion of the handler’s region, in this
example 0 : r v r. The function safeDiv is region polymorphic. It abstracts over a
region variable r. It is also annotated to run in the region r. To handle the exception we use
our safeDiv function as follows.

try { [r1](e1 : Handler r1, l1 : r1 v T) ⇒ safeDiv[r1](5, 0, e1) }
catch { return 0 }

Very much like the arena statement, the exception handler introduces a region variable r1,
a handler e1, and subregioning evidence l1. In the call to safeDiv, we instantiate the region
variable r to r1 and pass the exception handler e1. The example illustrates that we can
guarantee exception safety, or more generally effect safety, by the very same mechanism we
use for region safety.

Meaning of Regions and Evidence In the case of exceptions, a region is a list of exception
handlers on the runtime stack. Evidence now corresponds to the list of exception handlers
that an exception unwinds, again representing the difference between regions. An alternative
representation that suffices in this example is to interpret evidence as the total number of
exception handlers that need to be skipped over, reducing the meaning of evidence to the
bare minimum.

2.3 Combining Arenas and Exceptions
Let us now look at an example where we combine arenas and exceptions.

I Example 3. We install an exception handler and create two arenas. The inner statements
are checked in region r3.

try { [r1](e1 : Handler r1, l1 : r1 v T) ⇒
arena { [r2](a2 : Arena r2 String, l2 : r2 v r1) ⇒

arena { [r3](a3 : Arena r3 String, l3 : r3 v r2) ⇒
alloc(a3, "hello", 0);
alloc(a2, "world", l3);
throw(e1, l3 ⊕ l2)

}
}

} catch { return 1 }

To allocate into the arenas, we have to provide evidence, as before. To throw an exception to
the outer handler e1, we have to provide evidence that region r3 is inside of r1. We compose
evidence variables l3 ⊕ l2, to get evidence of type r3 v r1.

Meaning of Regions and Evidence In this combination, regions and evidence are again
lists, with elements that are either an arena or an exception handler . The evidence contains
exactly the arenas a3 and a2 we need to deallocate when we throw to handler e1. In this
example this is rather obvious. But in general, and especially in the presence of features like
first-class functions, parametric polymorphism, or mutable state it is not clear that this is
always the case.

TR 2021

6 All About That Stack

2.4 Regions and Evidence
Different language features like arenas and exceptions require assigning different meaning
to regions and evidence. Our conceptual framework equips us with the vocabulary to talk
about evidence as the constructive difference between regions. In the remainder, we will
further explore this notion of difference in two ways.

Operationally To make the above examples precise and provide an operational intuition, in
the next section we formally present the Λρ calculus together with an operational semantics.
In this semantics, regions and evidence are both represented as lists of markers. As we have
seen in the combined example, extending a language with multiple different features requires
potentially global changes to the meaning of regions and evidence.

Denotationally To study additional language constructs and their composition, in Section 4
we present a CPS translation of Λρ. Interestingly, where the small-step operational semantics
represented evidence as lists, in our translation we represent regions as answer types and
evidence as answer-type coercing functions, which can be understood as difference lists [28].
This way, each language feature can choose its own meaning of regions (by choosing a
corresponding answer type) and its own meaning of evidence (by implementing the answer
type coercing function). Function composition immediately gives rise to a sound composition
of the different interpretations of evidence.

3 A Calculus of Regions – Λρ

In this section, we present Λρ, a calculus with regions and subregioning evidence. We
then formally introduce the two extensions of the previous section: arenas and exceptions.
Both of these will push markers onto the runtime stack. We call the extended language
Λρ [Mem, Exc]. We define a small-step operational semantics for Λρ [Mem, Exc]. This
semantics provides a concrete operational intuition: a region is a list of concrete markers
on the stack and evidence is a list of markers that represents the difference between such
lists. This allows us to establish a correspondence between type-level regions and term-level
evidence, which is captured in Corollaries 3.3 and 3.4.

The paper is accompanied by a mechanized formalization of the extended language and
its operational semantics in the Coq theorem prover [2], including Theorems 3.1 and 3.2.
Region- and exception safety follow as corollaries: whenever we use an arena or throw an
exception, the corresponding marker or handler will be on the stack.

3.1 Syntax
Figure 2 defines the syntax of Λρ. We use fine-grain call-by-value [36] and syntactically
distinguish between statements, which can have effects, and pure expressions.

Function values (i.e., { [r](x : τ) at ρ ⇒ s}) abstract over a list of type-level region
parameters (i.e., r), and a list of term-level value parameters (i.e., x : τ). Each function
is defined to run exactly in a region ρ, but otherwise functions are unsurprising. Since our
focus is on the interaction between regions and control effects, we omit type abstraction
from this presentation. Our mechanized formalization includes type polymorphism, which is
orthogonal to the rest of the calculus.

We define the following short-hand notation for named function definitions:
def f [r](x : τ) at ρ { s0 }; s .= val f = return { [r](x : τ) at ρ ⇒ s0}; s

Schuster, Brachthäuser, and Ostermann 7

Terms:

Statements
s ::= val x = s; s sequencing
| return e returning
| e[ρ](e) application

Expressions
e, i ::= x | f | l variables
| v values
| 0 refl. evidence
| e ⊕ e trans. evidence

Values
v ::= () | 0 | 1 | ... | true | ...primitives
| { [r](x : τ) at ρ ⇒ s} closures

Types:

Types
τ ::= Int | Bool | ... primitives
| ∀[r] (τ) →ρ τ functions
| ρ v ρ evidence

Regions
ρ ::= r region variable
| T toplevel region

Environments:

Γ ::= ∅ empty env.
| Γ, r region binding
| Γ, x : τ value binding

Figure 2 Syntax of our base language Λρ.

The list of region parameters scopes over the parameter types, the return type, the annotated
region ρ, and the body of function s. We apply functions to a list of regions ρ and a list of
arguments e.

We introduce two additional concepts: type-level regions and term-level evidence. Type-
level regions ρ are either region variables r or the top-level region T. Intuitively, the top-level
region denotes the bottom part of the runtime stack. Term-level evidence expressions are
either an evidence variable l, the empty evidence 0 witnessing reflexivity of subregioning, or
the composition of evidence e ⊕ e, witnessing the transitivity of subregioning.

3.2 Typing

Figure 3 defines the typing rules of Λρ. We type statements and expressions with different
judgement forms. While both are typed in an environment Γ containing value and region
bindings, only statements are typed in a given region ρ. Statements may perform effectful
(that is, serious in the terminology of Reynolds [42]) computation, which is only safe in
specific regions. In contrast, expressions are pure (that is, trivial) and can be evaluated
independent of any region.

3.2.1 Typing of Statements

Rule Val types sequencing of statements. We type the two statements s0 and s in the same
region ρ of the compound statement. Returning a result of a computation (rule Ret) can be
typed in any region. In rule App we apply a function e0 to a list of regions ρ and to a list
of arguments e. The type of e0 is a function type in a region ρ0. The overall statement is
typed in a region ρ. The premise ρ = ρ0[r 7→ ρ] requires that, after substituting the regions
ρ for the region variables r both have to syntactically be the same. Note that we do not have
any implicit or explicit subtyping of function types here or elsewhere. All region subtyping
exclusively occurs through the passing of subregioning evidence.

TR 2021

8 All About That Stack

Statement Typing
Γ
↑

ρ
↑

` s
↑

: τ
↓

Γ ρ ` s0 : τ0 Γ, x0 : τ0 ρ ` s : τ

Γ ρ ` val x0 = s0; s : τ
[Val]

Γ ` e : τ

Γ ρ ` return e : τ
[Ret]

Γ ` e0 : ∀[r](τ) →ρ0 τ0 Γ ` e : τ [r 7→ ρ] ρ = ρ0[r 7→ ρ]
Γ ρ ` e0[ρ](e) : τ0[r 7→ ρ]

[App]

Expression Typing
Γ
↑

` e
↑

: τ
↓

Γ(x) = τ

Γ ` x : τ
[Var] Γ ` n : Int

[Lit] Γ, r , x : τ ρ ` s0 : τ0

Γ ` { [r](x : τ) at ρ ⇒ s0 } : ∀[r](τ) →ρ τ0
[Fun]

Γ ` 0 : ρ v ρ
[Reflexive] Γ ` e : ρ v ρ′ Γ ` e′ : ρ′ v ρ′′

Γ ` e ⊕ e′ : ρ v ρ′′ [Transitive]

Figure 3 Type system of our base language Λρ.

3.2.2 Typing of Expressions
The typing rules for variables Var and primitives Lit are standard. Rule Fun types functions.
We type the body of the function s0 in an environment extended with the region parameters r
and value parameter types x : τ . Every function is annotated with a region ρ that specifies
exactly the region it will have to be called in. This region ρ is also the region we type the
body s0 in. The region parameters r may appear in the parameter types, the return type, the
function’s region ρ, and body s0. As we will see, this allows us to write region-polymorphic
functions that can run in any region. Value parameters of evidence type allow us to write
region-polymorphic functions that are constrained to run in a subregion that meets these
constraints.

3.2.3 Typing of Evidence
Reflexivity evidence 0 witnesses that every region is nested within itself, and transitivity
evidence e ⊕ e′ witnesses the transitivity of nesting, which is reflected in their typing rules.
We require the composition of evidence to be associative.

Our language Λρ, as presented, provides the necessary framework but does not contain
features with interesting operational behavior. While we can abstract over regions, eventually
all region variables will be instantiated with the top-level region and evidence will always
be the trivial evidence. Therefore, we now introduce two extensions and then present the
operational semantics.

3.3 Arenas
In this subsection, we add statements for region-based resource management. They introduce
and eliminate non-trivial evidence and provide the basis for our correspondence theorem.

Schuster, Brachthäuser, and Ostermann 9

Extended Typing Rules:

Γ, r , x : Arena r τ ′, l : r v ρ r ` s : τ

Γ ρ ` arena { [r](x, l) ⇒ s } : τ
[Arena]

Γ ` e : Arena ρ′ τ ′

Γ ` e0 : τ ′ Γ ` i : ρ v ρ′

Γ ρ ` alloc(e, e0, i) : Ptr ρ′ τ ′ [Alloc]

Γ ` e : Ptr ρ′ τ ′

Γ ` i : ρ v ρ′

Γ ρ ` load(e, i) : τ ′ [Load]

Figure 4 Extension of Λρwith arena-based memory management (Λρ [Mem]).

Figure 4 introduces three additional statement forms and extends our base language to
Λρ [Mem].

The arena statement delimits a new region in which we run the statement s. It introduces
three variables, a fresh region variable r , a variable x : Arena r , and evidence l : r v ρ,
witnessing that the fresh region r is a subregion of the outer region ρ. Conceptually, the
arena statement allocates a fresh arena and pushes the pointer to this arena onto the runtime
stack. It runs the statement s in this extended context to then deallocate the arena and pop
the pointer. In our formalization, we refrain from modeling memory and only push and pop
a fresh pointer (that is, marker).

The alloc statement receives an arena argument e, an initial value e0, and an evidence
argument i : ρ v ρ′ that witnesses that the current region ρ is nested within the given
region ρ′. Rule Load for load statements is similar. Because we do not model memory in
our formalization, instead of alloc and load we have a statement check with the following
typing rule:

Γ ` e : Arena ρ′ τ ′ Γ ` i : ρ v ρ′

Γ ρ ` check(e, i) : Unit
[Check]

It asserts that the given arena is on the stack. We can implement alloc and load safely by
first performing this check and then using primitives for memory operations.

3.3.1 Region Polymorphism and Subregioning Evidence

To illustrate region polymorphism and the usage of subregioning evidence let us consider a
few examples.

def f() at T { return 5 };
arena { [r1](a1, l1) ⇒ f() /* type error */ }

def f[r]() at r { return 5 };
arena { [r1](a1, l1) ⇒ f[r1]() }

On the left, we define a function f that has to run in the top-level region T. This example
does not typecheck, since we try to call f in the fresh region r1. If we want f to be callable
in any region, we have to give it a region-polymorphic type, as on the right. At the call site,
we have to instantiate the region parameter of f to the region r1 in which we call it. We
can constrain the region-polymorphic function to a specific region by requiring evidence as a
parameter.

TR 2021

10 All About That Stack

Extended Typing Rules:

Γ, r , x : Handler r , l : r v ρ r ` s0 : τ Γ ρ ` s : τ

Γ ρ ` try { [r](x, l) ⇒ s0 } catch s : τ
[Try]

Γ ` e : Handler ρ′ Γ ` i : ρ v ρ′

Γ ρ ` throw(e, i) : τ
[Check]

Figure 5 Extension of Λρwith exceptions (Λρ [Exc]).

arena { [r1](a1, l1) ⇒
def f[r](l: r v r1) at r { val u = check(a1, l); return 5 };
arena { [r2](a2, l2) ⇒ f[r2](l2) }

}

Here we say that we can call f in any region r that is within r1. At the call-site we instantiate
r to r2 and provide the appropriate evidence.

3.4 Exceptions
We now add statements for exceptions. We refer to the extended language as Λρ [Exc]. The
two new statement forms are given in Figure 5.

The try ... catch ... statement delimits a new region in which we run the enclosed state-
ment s. It introduces three variables, a fresh region variable r , a variable x : Handler r ,
and an evidence variable l : r v ρ, witnessing that the fresh region r is a subregion of the
outer region ρ. As we will see, operationally it installs a catch frame on the runtime stack,
labeled with a fresh marker. The handler x contains this label in order to allow throwing to
the correct exception handler.

The throw statement is checked similarly to alloc. Operationally, it throws to the given
handler by unwinding the stack until it hits a catch frame with this exact marker and then
executes the body of the catch clause. Again, evidence guarantees that unwinding never fails,
i.e. the corresponding maker is always somewhere on the runtime stack.

3.5 Operational Semantics
We now define a substitution-based, small-step operational semantics for the language with
both arenas and exceptions which we call Λρ [Mem, Exc].

Figure 6 extends this language with run-time constructs. These do not appear in source
programs but are introduced during evaluation. A region value is an ordered list of runtime
markers on the runtime stack, from innermost to outermost. While in the source language
regions are on the type-level, during evaluation every region will become such a region
value. An evidence value is an ordered list of markers too. Rules ArenaMarker and
CatchMarker type the new runtime statements. During evaluation the region we type
these statements in will be a region value u. This region value is the list of markers in
the evaluation context of the statement, i.e. the runtime stack. The enclosed statement
s0 is typed in an extended runtime region m :: u. Rule Evidence types evidence values
and connects run-time evidence, type-level regions, and run-time regions. At runtime, the
evidence value w, the runtime region u0 and the runtime region u1 will all be lists of markers.

Schuster, Brachthäuser, and Ostermann 11

Semantics of Evidence and Regions:

m ::= @a5f | @4b2 | ... markers
w ::= · | m :: w evidence values
u ::= · | m :: u region values

Extended Syntax:

s ::= ...

| #arenam { s } arena marker
| #catchm { s } { s }catch marker

v ::= ... | w evidence value
ρ ::= ... | u region value

Extended Typing:

Γ m :: u ` s0 : τ

Γ u ` #arenam { s0 } : τ
[ArenaMarker]

Γ m :: u ` s0 : τ Γ u ` s : τ

Γ u ` #catchm { s0 } { s } : τ
[CatchMarker]

u0 = w ++ u1

Γ ` w : u0 v u1
[Evidence]

Figure 6 Run-time syntax and typing of Λρ [Mem, Exc].

The evidence w is precisely the difference between the runtime regions u0 and u1. Our proof
of preservation ensures that this invariant always holds throughout reduction.

3.5.1 Reduction Semantics
Figure 7 defines a small-step operational semantics for Λρ [Mem, Exc]. It is all about that
stack: the evaluation context K directly models the runtime stack with normal stack frames,
arena markers, and catch clauses. The crucial rule is the one for congruence (cong). It defines
the reduction relation of statements 7−→ in terms of a reduction relation →u, where u is a
run-time region extracted from the actual context as dKe. Indexing the reduction by the
current runtime region allows us to establish the correspondence between regions as they
appear on the type level and the concrete region as the list of markers on the runtime stack
at run time.

Since evaluation of expressions does not affect the evaluation context, we present its
reduction as a big-step reduction rule VJ · K. The reflexivity evidence is the empty list of
markers and transitivity of evidence appends the two lists of markers. If we had (trivial)
primitives like addition we would define their reduction in this rule, too. Rule (ret) is fairly
standard. In the rule for function application (app), we check that the annotated region
ρ matches exactly (after substitution) the actual run-time region. A non matching region
results in a stuck term.

In rule (arena), we create a fresh marker m and run the statement s in a context with
this new marker added. We substitute the extended runtime region (m :: u) for the region
variable r . We substitute the fresh marker m for the arena variable x . The evidence variable
l witnesses the nesting of r in ρ by describing the difference between the two runtime regions
as a singleton list of the fresh marker m. Rule (check) asserts that the marker m is an
element of the current runtime region u. It returns the unit value when this check succeeds
and gets stuck otherwise.

Rule (try) does the same as rule arena, but pushes a catch frame onto the stack instead
of an arena frame. When an exception is thrown we unwind the stack frame by frame until
we find the matching catch frame. We pop elements off the evidence i in lock step with
popping arena- and catch frames off the stack. We assert that we find the matching catch
frame exactly when the evidence value is the empty list: the evidence value precisely reflects

TR 2021

12 All About That Stack

Syntax of Contexts:

K ::= � | val x = K; s | #arenam { K } | #catchm { K } { s }

Congruence:

d.e : K → u
d�e = ·
dval x = K; se = dKe
d#arenam { K }e = dKe ++ m
d#catchm { K } { s }e = dKe ++ m

s →dKe s′

K[s] 7−→ K[s′]
(cong)

Reduction in Context:

(ret) val x = return e; s →u s[x 7→ VJeK]

(app) { [r](x : τ) at ρ ⇒ s0 }[u](e)→u s0[r 7→ u][x 7→ VJeK]
where u = ρ[r 7→ u]

(arena) arena { [r](x, l) ⇒ s0 } →u #arenam { s0[r 7→ m :: u][x 7→ m][l 7→ m :: ·] }
where m fresh

(check) check(m, i) →u return ()
where m ∈ u

(poparena) #arenam { return e } →u return VJeK

(try) try { [r](x, l) ⇒ s0 } catch { s }→u #catchm { s0[r 7→ m :: u][x 7→ m][l 7→ m :: ·] } { s }
where m fresh

(unwind1) val x = throw(m, i); s →u throw(m, i)

(unwind2) #arenam′ { throw(m, i) } →u throw(m, w)
where VJiK = m′ :: w

(unwind3) #catchm′ { throw(m, i) } { s }→u throw(m, w)
where VJiK = m′ :: w and where m′ 6= m

(catch) #catchm { throw(m, i) } { s }→u s
where VJiK = ·

(popcatch) #catchm { return e } { s } →u return VJeK

Evaluation of Expressions:

VJ0K = .

VJe1 ⊕ e2K = VJe1K ++ VJe2K
VJvK = v

Figure 7 Operational semantics of Λρ [Mem, Exc]

the list of markers between the region of the throw statement and the region of the catch
statement.

We mechanized the formalization of Λρ [Mem, Exc] in the Coq theorem prover and
showed the usual theorems of progress and preservation.

I Theorem 4 (Progress).
If ∅ · ` s : τ , then either s 7−→ s′ or s is of the form return v for some value v.

I Theorem 5 (Preservation).

Schuster, Brachthäuser, and Ostermann 13

If ∅ · ` s : τ and s 7−→ s′ then ∅ · ` s′ : τ .

3.6 Region- and Evidence Correspondence
The goal of this section was to formally establish the connection between type-level regions
and term-level evidence in the presence of region-based resource management (arenas) and
control effects (exceptions) during evaluation. We’ve set everything up so the following two
simple corollaries hold by construction:

I Corollary 6 (Region Correspondence).
If ∅ · ` K[s] : τ , then ∅ dKe ` s : τ ′ for some type τ ′.

I Corollary 7 (Evidence Correspondence).
If an evidence values w has type u0 v u1 for some runtime regions u0 and u1 then
u0 = w ++ u1.

Type-level region variables stand for exactly the lists of markers that the current runtime
context contains. Evidence values are exactly the difference between two such lists. These
corollaries are inspired by the similarly named theorem of Xie et al. [51].

Together, these corollaries make runtime regions and runtime evidence on the one hand
and marker frames on the stack on the other hand redundant: We could erase regions and
evidence as they do not have any significance at runtime. In the next section we are going to
do the opposite: Erase marker frames and solely rely on evidence terms to have the correct
content at runtime.

4 Combining Regions and Effects via Continuation-Passing Style

We now give a denotational semantics to Λρ [Mem, Exc] as a translation to System F in
CPS. Again, it is all about that stack: evaluation contexts K now become continuations [12].
In our translation, regions correspond to answer types and evidence terms are translated to
answer-type coercions, generalizing the interpretation of evidence by Fluet and Morrisett [20].
By translation into CPS, the semantics is easily extensible, allowing us to present multiple
different extensions that naturally can be composed without changing the denotations of the
others.

Our translation to System F can also serve as a compilation technique for languages with
effects and resources into any language that supports first-class functions, which makes it
widely applicable. Moreover, it is a generalization of the translation presented by Schuster et al.
[44], which has been shown to enable compile-time optimizations for significant performance
improvements.

We implemented Λρ and all of the extensions and examples of this section in the de-
pendently typed language Idris 2 [10] as a shallow embedding. This serves to establish two
things: Firstly, the translations take well-typed terms to well-typed terms in System F and
soundness directly follows from the soundness of System F. Secondly, running the examples
yields the expected results indicating that all language constructs plausibly do what they
should under this semantics.

4.1 Translation of the Base Language Λρ

To give semantics to Λρ and to its extensions, we translate them to System F in one particular
variant of CPS, called iterated CPS [13, 43]. That is, we use a more structured form of
continuations (or stacks). Every stack segment, delimited by a marker, is represented by its

TR 2021

14 All About That Stack

Translation of Types:

T J Int K = Int
T J r K = r
T J T K = Void
T J ∀[r](τ) →ρ τ0 K = ∀r . T JτK → Cps T J ρ K T J τ0 K
T J ρ v ρ′ K = ∀a. Cps T J ρ′ K a → Cps T J ρ K a

Translation of Statements:

SJ val x = s0; s1 Kρ = λk ⇒ SJ s0 Kρ (λx ⇒ SJ s1 Kρ k)
SJ return e Kρ = λk ⇒ k (EJeK)
SJ e0[ρ](e) Kρ = EJe0K T J ρ K EJeK

Translation of Expressions:

EJ x K = x
EJ { [r](x : τ) at ρ ⇒ s} K = Λr ⇒ λx ⇒ SJ s Kρ

EJ 0 K = Λa ⇒ λm ⇒ m
EJ e1 ⊕ e2 K = Λa ⇒ λm ⇒ EJ e1 K a (EJ e2 K a m)

Auxiliary Definitions:

Cps R A = (A → R) → R

Figure 8 Translation from Λρto System F.

own continuation argument. In other words, in iterated CPS, functions do not receive one
but potentially multiple continuations.

Translation of Types
Figure 8 defines the translation of Λρ to System F. Base types, such as Int are left unchanged
by the translation. We translate region variables to type variables in System F and the
toplevel region to the empty type Void. The translation on types shows that the iterated CPS
translation is very similar to the traditional CPS translation. In particular, the auxiliary
meta-definition Cps R A is defined as the familiar type (A → R) → R of computations in
CPS with return type A and answer type R. Evidence terms are functions between effectful
computations, as can be seen from the translation of evidence types.

Translation of Terms
As usual in CPS, we translate sequencing of statements to push a frame onto the current
continuation k, that is, the continuation first runs s1 and then continues with k. Return
statements are translated to calls to the current continuation. Again, viewing continuations
as stacks, this is in accordance with the operational semantics given in Section 3.5. In
general, statements with return type τ that have to be run in a region ρ are translated to
terms of type Cps T JρK T JτK. This can for instance be seen in the translation of function
types.

The semantics of regions and evidence are as follows.

1. We translate regions to answer types. Each of the extensions is free to choose a different

Schuster, Brachthäuser, and Ostermann 15

answer type. Region abstractions are translated to type abstractions and region polymor-
phic functions have a polymorphic answer type. To make the connection to our overview
in Figure 1, throughout the current section, we will highlight the choice of answer types
as τ .

2. We translate evidence expressions to functions that lift a computation to run in a different
region. The concrete implementation of evidence is again up to the specific extension.
Generally, the reflexivity evidence is translated to the polymorphic identity function, and
transitivity of evidence amounts to function composition. Again, to make the connection
to our overview, we highlight the denotational choice of evidence as Λa ⇒ λm ⇒

These two aspects represent the key novelty of our translation. To emphasize, the translated
type of evidence ∀a. Cps T J ρ′ K a → Cps T J ρ K a tells us that evidence transforms a
computation to have a different answer type! Comparing this type to our interpretation of
evidence in the previous section, it not merely tells us the difference between two regions,
it actually allows us to move between regions on the stack. This interpretation is also in
accordance with the visualization of Figure 1: evidence tells us how to do a control transfer
from one region to another.

We translate well-typed programs in Λρ and all of its extensions presented in this section
to well-typed programs in System F. The accompanying Idris code is a proof of this.

I Theorem 8 (Well-typedness of Translated Terms).
If Γ ρ ` s : τ , then T J Γ K ` SJsKρ : (T J τ K → T J ρ K) → T J ρ K

In the remainder of this section, we extend our base language Λρ and define translations for
different language features, such as exceptions, finalizers, effect handlers, mutable state, or
dynamic-wind. All translations are based on the idea of regions as answer types and evidence
terms as answer-type coercions. The translation of the base language stays the same.

4.2 Arenas
In Figure 4, we have seen the typing rules for Λρ [Mem]. Now we give translation of this
feature to CPS. In general, the same approach works also for resources other than memory,
such as file handles. In Section 4.4 we present a more general finalization construct.

Translation
Figure 9 defines the translation of Λρ [Mem] to CPS. We do not need any runtime checks to
prevent pointers from being used outside of their region, justified by Corollaries 3.3 and 3.4.
The arena statement creates a fresh arena. When control leaves the enclosed block, memory
in the arena is destroyed. In its translation we use the auxiliary meta function RunArena.
It binds the current continuation k and allocates a primitive arena h. We run the given
computation m with h and a continuation where we push a frame that frees the arena onto
the current continuation k. In the body of the arena statement we abstract over a region r ,
an arena x, and evidence l. We apply this function to three arguments: The outer region ρ,
the primitive arena h, and the evidence LiftArena h. Importantly, this evidence will free
the arena. This corresponds to allocating a specialized frame on the stack for finalization.
The alloc statement allocates a value into an arena. We require evidence that the arena is
still live, i.e. on the runtime stack, but don’t actually use it. Similarly, when we use the load
statement to load a value from a pointer, we require evidence that the corresponding arena is
still live, which it always is. Evidence terms are translated to functions (Section 4) whereas

TR 2021

16 All About That Stack

Extended Translation Rules:

T J Arena ρ τ K = PrimArena
T J Ptr ρ τ K = PrimPtr

SJ arena { [r](x, l) ⇒ s0 } Kρ =
RunArena (λh ⇒ (Λr ⇒ λx ⇒ λl ⇒ SJ s0 Kr) (T J ρ K) h (LiftArena h))

SJ alloc(e, e0, i) Kρ = λk ⇒ k (allocPrimPtr EJeK EJe0K)
SJ load(e, i) Kρ = λk ⇒ k (loadPrimPtr EJeK)

Auxiliary Definitions:

RunArena : (PrimArena → Cps R A) → Cps R A
RunArena = λm ⇒ λk ⇒

let h = allocPrimArena (); m h (λx ⇒ freePrimArena h; k x)

LiftArena h : ∀a. Cps R a → Cps R a
LiftArena h = Λa ⇒ λm ⇒ λk ⇒ freePrimArena h; m k

Figure 9 Translation of Λρwith arena-based memory management (Λρ [Mem]).

in Section 3.5 evidence was a list of markers. However, under our translation, evidence
still contains a list of markers. It is just hidden in the closure environment of the evidence.
Evidence composition concatenates these lists.

I Example 9. Let us consider a simplified version of the motivating example (Section
2.1). The example on the left translates to the term in System F in the right. It has type
Cps Void Int.

arena {
[r1](a1: Arena r1 A, l1: r1 v T) ⇒

val ptr = alloc(a1, aValue, 0);
return 0

}

λk ⇒
let h = allocPrimArena ();
(Λr1 ⇒ λa1 ⇒ λl1 ⇒ λk1 ⇒
let ptr = allocPrimPtr a1 aValue;
k1 0) Void h

(Λa ⇒ λm ⇒ λk ⇒ freePrimArena h; m k)
(λx ⇒ λk ⇒ freePrimArena h; k x)

This term can be simplified to the following

λk ⇒ let h = allocPrimArena (); let ptr = allocPrimPtr h aValue; freePrimArena h; k 0

So far, we have not used any evidence yet. All control flow is local and the only way to leave
a region is to return from it. In the next section we will add exceptions as an example of a
control operator with non-local control transfer.

4.3 Exceptions
Figure 5 presented the extension of Λρ with exceptions (Λρ [Exc]). In Section 3.5 we have
seen an operational semantics for this language. Now we present translation for this language
to System F. Whereas in the operational semantics we have divided the stack into regions
with markers, we now have multiple stacks, i.e. continuations. We have seen that evidence
terms contained exactly the list of markers we have to unwind when we throw to a handler.
Now we take advantage of this fact and let the evidence be the unwinding action itself.

Schuster, Brachthäuser, and Ostermann 17

Extended Translation Rules:

T J Handler ρK = Cps T J ρ K Void

SJ try { [r](x, l) ⇒ s0 } catch { s } Kρ =
RunCps ((Λr ⇒ λx ⇒ λl ⇒ SJ s0 Kr) (Cps T J ρ K T J τ K) (λk ⇒ SJ s Kρ) (LiftCps))

SJ throw(e, i) Kρ = EJiK Void EJeK

Auxiliary Definitions:

RunCps : Cps (Cps R A) A → Cps R A
RunCps = λm ⇒ m (λx ⇒ λk ⇒ k x)

LiftCps : ∀a. Cps R a → Cps (Cps R R′) a
LiftCps = Λa ⇒ λm ⇒ λk ⇒ λj ⇒ m (λx ⇒ k x j)

Figure 10 Translation of Λρwith exceptions (Λρ [Exc]).

Translation
Figure 10 defines the semantics of exceptions as a translation to System F. It generalizes
the translation to double-barreled CPS from [29] to iterated CPS. In the translation of
the try ... catch ... statement, we use RunCps. It runs the given computation m with an
additional continuation which is initially empty. We instantiate the answer type r of the
translated body s0 to be the type Cps T JρK T JτK. A Handler ρ is a CPS expression that
aborts the current continuation. The evidence l lifts the given computation from the inner
region to the outer region. It will be bound to LiftCps which pushes the current continuation
onto the next one. In the translation of a throw(e, i) statement, to abort the current
continuation, we now use the evidence to lift the handler into the correct region. This way,
the handler can run in the current region and is compatible to the current answer type.

I Example 10. Let us consider the motivating example with exceptions from Section
2.2. Again, the example on the left is translated to the resulting System F term of type
Cps Void Int on the right.

try { [r1](e1 : Handler r1, l1 : r1 v T) ⇒
safeDiv[r1](5, 0, e1)

} catch {
return 0

}

(Λr1 ⇒ λe1 ⇒ λl1 ⇒
safeDiv r1 5 0 e1

) (Cps Void Int)
(λk1 ⇒ λk2 ⇒ k2 0)
(Λa ⇒ λm ⇒ λk ⇒ λj ⇒ m (λx ⇒ k x j))
(λx ⇒ λk ⇒ k x)

The resulting System F term can be further simplified to:
λk2 ⇒ safeDiv (Cps Void Int) 5 0 (λk1 ⇒ λk2 ⇒ k2 0) (λx ⇒ λk ⇒ k x) k2

We instantiate the answer type r of safeDiv with r1 which we then instantiate to the
type Cps Void Int. Its overall return type is then Cps (Cps Void Int) Int. It receives two
continuations. The exception handler e1 discards the first continuation and returns 0 to the
second.

Our translation to CPS is compositional and as such interacts nicely with the evidence terms
we have defined for arenas in Section 4.2: We free an arena exactly when an exception is
thrown across it. We now generalize this idea and run a user-defined cleanup action whenever
we leave a region.

TR 2021

18 All About That Stack

Extended Typing Rules:

Γ, r , l : r v ρ r ` s0 : τ Γ ρ ` s : ()
Γ ρ ` try { [r](l) ⇒ s0 } unwind { s } : τ

[Unwind]

Extended Translation Rules:

SJ try { [r](l) ⇒ s0 } unwind { s } Kρ =
(Λr ⇒ λl ⇒ SJ s0 Kr) T J ρ K (LiftFin SJ s Kρ)

Auxiliary Definitions:

LiftFin f : ∀a. Cps R a → Cps R a
LiftFin f = Λa ⇒ λm ⇒ λk ⇒ f (λu ⇒ m k)

Figure 11 Extension of Λρwith finalizers (Λρ [Fin]).

4.4 Finalizers

In Figure 11, we again extend Λρ, this time with finalizers (Λρ [Fin]). The try ... unwind ...
statement runs the action s whenever an exception would cause control to leave the corre-
sponding try. The cleanup action will not be called upon normal return.

Translation

In the translation, the evidence LiftFin f will run the cleanup statement f , ignore its result
(bound to u), and continue to run the rest of the evidence m. This is a generalization of
the translation of the arena statement: Instead of freeing the arena, we run an arbitrary
user-defined cleanup action. The evidence contains this cleanup action. When we compose
evidence it will conceptually contain a list of cleanup actions that are all run sequentially.

I Example 11. The following example illustrates what happens in our semantics when a
finalizer itself throws an exception.

try { [r1](e1 : Handler r1, l1 : r1 v T) ⇒
try { [r2](l2 : r2 v r1) ⇒

throw(e1, l2)
} unwind {

throw(e1, 0)
}

} catch { return 0 }

To throw from region r2 to region r1, we have to provide evidence that r2 v r1. It contains
the finalization function which will be called. The unwind statement runs in region r1, to
throw from it we have to provide evidence that r1 v r1. Because the finalizer is part of the
evidence, throwing from it will abort finalization and start to run the evidence given to the
throw statement.

In the following subsection, we look at a control operator that exposes the delimited
continuation of the current computation to the programmer.

Schuster, Brachthäuser, and Ostermann 19

Extended Typing Rules:

Γ, r , x : Prompt r ρ τ, l : r v ρ r ` s : τ

Γ ρ ` reset { [r](x, l) ⇒ s } : τ
[Reset]

Γ ` e : Prompt ρ′ ρ0 τ0 Γ ` i : ρ v ρ′ Γ, k : (τ) →ρ0 τ0 ρ0 ` s0 : τ0

Γ ρ ` shiftTo(e, i) { (k) ⇒ s0 } : τ
[ShiftTo]

Extended Translation Rules:

T J Prompt ρ ρ0 τ0 K = ∀a. Cps (Cps T Jρ0K T Jτ0K) a → Cps T JρK a

SJ reset { [r](x, l) ⇒ s } Kρ =
RunCps ((Λr ⇒ λx ⇒ λl ⇒ SJ s Kr) (Cps T J ρ K T J τ K) (Λa ⇒ λm ⇒ m) (LiftCps))

SJ shiftTo(e, i) { (k) ⇒ s0 } Kρ= EJiK (T JτK) (EJeK (T JτK) (λk ⇒ SJ s0 Kρ0
))

Figure 12 Extension of Λρwith a control operator (Λρ [Shf]).

4.5 Control Operators
Whereas exceptions allow us to jump out of a region, more general control operators allow us
to jump back into it. There are many flavors of control operators that capture the continuation
and give programmers the choice to resume computation, perhaps multiple times, or discard
the continuation and abort [13, 17, 45, 16]. They are useful for structuring programs with
complex control flow and can express a large number of useful idioms [24, 26, 34].

Figure 12 extends Λρ with an operator for delimited control (Λρ [Shf]). We install a
delimiter with reset. The body s runs in a fresh region r . The body is also given access to a
prompt x of type Prompt r ρ τ . It witnesses that when we are in region r and we can shift
to the outer region ρ with an answer type τ . Finally, the body has access to evidence l that
the fresh region r is inside of the outer region ρ. We capture the current continuation with
shiftTo, which has three arguments: the prompt e that we want to capture the continuation
to, evidence i that (conceptually) this prompt is currently on the stack, and a body s that
can use the current continuation k. While the overall statement runs in region ρ, the body
runs in region ρ0 and has to answer with a type τ0. Also, the continuation k has to run in
the very same region ρ0 and will return an answer of type τ0.

Translation
The translation uses iterated CPS in a way very similar to how we translated exceptions
in Section 4.3. To translate the delimiter reset, we again don’t segment the stack with
markers, but have multiple stacks (i.e. continuations). The evidence explains how to capture
the correct number of continuations. Differently to exceptions, however, is that instead of
running a fixed handler we now run the given body s0 in the translation of shiftTo. We do
not discard the continuation k, it can occur free in the translated body s0.

I Example 12. The following classical example by Danvy and Filinski [13] uses delimited con-
trol to compose the current continuation with itself 1 + reset(10 + shift (λk ⇒ k (k 100))).
Calling the continuation twice, duplicates the frame 10 + � and thus running the example
evaluates to 1 + (10 + (10 + 100)) = 121. Translated to Λρ [Shf] it looks like this:

1 + reset { [r1](p1, l1) ⇒ 10 + shiftTo(p1, 0) { (k) ⇒ k(k(100)) } }

TR 2021

20 All About That Stack

Extended Typing Rules:

Γ, r , f : Cap r τ1 τ2, l : r v ρ r ` s0 : τ

Γ, x : τ1, k : Cap ρ τ2 τ ρ ` s : τ

Γ ρ ` try { [r](f , l) ⇒ s0 } with { (x, k) ⇒ s } : τ
[Try]

Γ ` e0 : Cap ρ′ τ1 τ2

Γ ` e : τ1

Γ ` i : ρ v ρ′

Γ ρ ` do(e0, e, i) : τ2
[Do]

Extended Translation Rules:

T J Cap ρ τ1 τ2K = T Jτ1K → Cps T JρK T Jτ2K

SJ do(e0, e, i) Kρ = EJiK (T Jτ2K) (EJe0K EJeK)

SJ try { [r](x, l) ⇒ s0 } with { (x, k) ⇒ s } Kρ =
RunCps ((Λr ⇒ λx ⇒ λl ⇒ SJ s0 Kr) (Cps T JρK T JτK) (λx ⇒ λk ⇒ SJ s Kρ) (LiftCps))

Figure 13 Extension of Λρwith effect handlers (Λρ [Eff]).

Let us assume this statement runs in a region r0. Then the prompt p1 has type Prompt r1 r0 Int.
We can use it in region r1 (and any subregion) to capture the current continuation and jump
back into region r0. The type of the result of reset, i.e. the answer type, is Int. In the body
of shiftTo we can safely use everything we can use in region r0. The continuation k has type
(Int) →ρ0 Int, signaling that it runs in region ρ0, the one outside of the reset. Both calls to
the continuation ρ0 happen in exactly that region.

The control operator shiftTo that we introduced here, is more limited than other control
operators. We statically enforce the restriction of scoped resumptions [51], that is, the
continuation will always be called in exactly the same region that it was based in. For the
same reason, even though we use the word “Prompt”, this is very different from multi-prompt
delimited control [45]. In the next subsection we will look at a different way to access
delimited continuations: effect handlers.

4.6 Effect Handlers
Among the different approaches to effect handlers, the one that fits particularly nicely with
our framework are effect handlers in capability-passing style [6, 9]. In this style, an effect
handler delimits the current continuation and provides a capability that will capture the
current continuation up to the corresponding handler. Effect safety means that this capability
shall only be used within the dynamic extent of the handler.

Figure 13 extends Λρ with statements and typing rules for effect handlers, resulting in
the language Λρ [Eff]. The try ... with ... statement for effect handlers is very similar to
the one for exception handlers. The delimited statement s0 is typed in a fresh region r . It
gets access to a capability f : Cap r τ1 τ2. This capability can be used in region r and in
regions nested in it, and can be applied to an argument of type τ1 to get a result of type τ2.

The statement s in the handler clause gets access to a parameter x and a continuation k.
We model the continuation also as a capability, as we can only use it in region ρ and any
region nested in ρ. This restriction is important to guarantee effect safety. The continuation
might itself use effect operations and we want to guarantee that the corresponding delimiters
are on the stack when we call the continuation. When we use a capability with do(e0, e, i),
we supply an argument e and evidence i that the current region ρ is nested in the region of
the capability ρ′.

Schuster, Brachthäuser, and Ostermann 21

Translation

Figure 13 defines the semantics of effect handlers as a translation to iterated CPS. Capabilities
are (effectful) functions. The translated try ... with ... statement installs a delimiter. Rather
than always discarding the continuation, as was the case in exception handlers, the translated
handler clause s can make use of it. When we perform an effect operation, we apply the
translated capability to the translated argument and use the translated evidence to lift the
resulting computation to run in the correct region.

I Example 13. The following example uses effect handlers to fork the current computation.

def handleForkList[r0, t](
prog : [r](Cap r () Bool, r v r0) →r t

) at r0 {
try { [r1](fork, l1) ⇒

val result = prog[r1](fork, l1);
return (singletonList(result))

} with { ((), resume) ⇒
val xs = do(resume, true, 0);
val ys = do(resume, false, 0);
append(xs, ys)

}

The function handleForkList provides the capability fork to the given program prog.
When we perform a fork, we capture the current continuation and resume twice: once with
true and once with false and append the resulting lists.

4.7 Local State

Another interesting use-case for region tracking is local mutable state [33]. The idea is that
we can use mutable references locally but encapsulate this mutation so that the overall
function is pure [46]. For this to be safe, again, it is key that mutable references are not
used outside of their region either directly or through an escaping function that has closed
over them. The typing judgements of Λρ [State] (Figure 14), the extension of Λρ with local
mutable references, ensure this. It is possible to implement references as raw pointers into
the global heap and perform updates in-place for increased performance. However, naïvly
combining effect handlers and this implementation of local mutable references results in
undesired consequences.

I Example 14. The interaction of effect handlers and local mutable references is illustrated
in the following example.

handleForkList[T, Int]({ [r1](fork, l1) ⇒
new(8) { [r2](ref, l2) ⇒

val b = do(fork, (), l2);
if (b) { val x = get(ref, 0); set(ref, x + 1, 0) }
else { val x = get(ref, 0); set(ref, x + 2, 0) };
get(ref, 0)

}})

We handle this program with the handler function for fork that we’ve seen in Subsection 4.6.
If we use global mutable references, for example a heap allocated reference cell, we would get
the list [9, 11] as the result of running this program, which is wrong. This program should

TR 2021

22 All About That Stack

Extended Typing Rules:

Γ ` e0 : τ0 Γ, r , x : Ref r τ0, l : r v ρ r ` s : τ

Γ ρ ` new(e0) { [r](x, l) ⇒ s } : τ
[New]

Γ ` e0 : Ref ρ′ τ

Γ ` i : ρ v ρ′

Γ ρ ` get(e0, i) : τ
[Get]

Γ ` e0 : Ref ρ′ τ Γ ` e : τ

Γ ` i : ρ v ρ′

Γ ρ ` set(e0, e, i) : ()
[Set]

Extended Translation Rules:

T J Ref ρ τ K = (Unit → Cps T JρK T JτK) × (T JτK → Cps T JρK Unit)

SJ new(e0) { [r](x, l) ⇒ s } Kρ =
RunState EJe0K ((Λr ⇒ λx ⇒ λl ⇒ SJ s Kr) (Reader T Jτ0K T JρK) (Get, Set) (LiftState))

SJ get(e0, i) Kρ = EJiK T JτK (fst EJe0K ())
SJ set(e0, e, i) Kρ = EJiK T JUnitK (snd EJe0K EJeK)

Auxiliary Definitions:

Reader S A = S → A

RunState : S → Cps (Reader S R) A → Cps R A
RunState = λz ⇒ λm ⇒ λk ⇒ m (λx ⇒ λs ⇒ k x) z

LiftState : ∀a. (Cps R a) → (Cps (Reader S R) a)
LiftState = Λa ⇒ λm ⇒ λk ⇒ λs ⇒ m (λx ⇒ k x s)

Get : Unit → Cps (Reader S R) S
Get = λu ⇒ λk ⇒ λs ⇒ k s s

Set : S → Cps (Reader S R) Unit
Set = λs ⇒ λk ⇒ λd ⇒ k () s

Figure 14 Extension of Λρwith local state (Λρ [State]).

return the list [9, 10]. We know that the fork is across the local reference ref, because we
have to pass evidence l2 when we perform the fork.

When we fork the computation, it is important that modifications to references are only
performed locally in the current branch of the computation [32, 39]. Moreover, modifications
to other references, created outside of the handler for fork, should still be visible to both
branches of the computation. Our framework suggests two solutions to this problem.

Translation
Figure 14 presents the semantics of local mutable references as a translation from Λρ [State]
to System F, that exhibits the correct backtracking behavior. When we introduce a new
mutable reference with new, we run the inner computation at type Cps (Reader E R) A.
A reference is a pair of a getter and a setter. The evidence term will push the current state
onto the continuation. Again, it is “all about that stack”. Conceptually, we put local state
onto the stack and we do so by an appropriate choice of answer type. This translation
dictates the correct semantics, but it would be wasteful in practice, because we use the

Schuster, Brachthäuser, and Ostermann 23

evidence in all get and set statements which makes access to references linear in the number
of nested reference handlers, and moreover, when combined with other extensions, runs
all computations contained in the evidence. However, this translation is useful for local
optimization of functions that use mutable references when compiling with continuations [11].
Since we translate to pure System F, we reduce the problem of optimizing mutable references
to the problem of optimizing pure functions. We effectively transform local mutable references
to use registers.

I Example 15. As an example for such optimizations consider the statement:

val x = get(ref, 0); set(ref, x + 1, 0)

Using the translation of Λρ [State] to System F the program translates to

λj ⇒ ((Λa ⇒ λm ⇒ m) Int ((λu ⇒ λk ⇒ λs ⇒ k s s) ())
(λx ⇒ (Λa ⇒ λm ⇒ m)

Unit ((λs ⇒ λk ⇒ λd ⇒ k () s) (x + 1))) j)

and can statically be reduced to λj ⇒ λs ⇒ j () (s + 1).

Under our translation, optimization of effectful programs is just inlining and β-reduction,
which is a well-studied topic in compilers for functional languages. This optimization interacts
well with control effects by iterated CPS. In fact, we can fully reduce Example 4.7 at compile
time to its result just by inlining and β-reduction. This is similar to what Schuster et al.
[44] propose, but our source language and translation are more general.

Backtracking State via Backup/Restore Another solution to the problem of correctly
backtracking mutable reference in the presence of control, is to store references on the
runtime stack, backup-up the current state during unwinding, and restore that state upon
resumption [32, 7, 8]. In our translation, evidence has computational content. This way, as
an alternative implementation strategy, we can use global mutable references without any
special runtime support and still obtain the correct backtracking behavior. The idea is to
push the code that performs the backup and restore into the evidence. When we capture
a continuation across a mutable reference, the continuation closes over the state, which it
restores on resumption. Please consult the accompanying code for more details. This has
advantages from a performance perspective: code that does not capture the continuation
only performs reads and writes on raw references. At the same time, code that does capture
the continuation has the correct backtracking behavior. In the next section we will generalize
this idea and present dynamic wind.

4.8 Dynamic Wind

Dynamic wind [21] allows user definable actions to be performed every time control effects
are used to enter and leave a region. We have already seen the first half of dynamic wind in
Λρ [Fin], where we could install a cleanup action that is run when we unwind the stack across
it. Naturally, in our framework finalizers also interact well with effect handlers and can be
combined to obtain the language Λρ [Eff, Fin]. However, in face of resumable exceptions,
such as provided by effect handlers, it makes sense to extend our language with an additional
construct to install an action to run when we resume a captured continuation. Figure 15
extends Λρ with a statement for dynamic wind (called Λρ [Eff, Fin, Dyn]). The action s
is triggered, whenever the control flow re-enters the region denoted by r .

TR 2021

24 All About That Stack

Extended Typing Rules:

Γ, r , l : r v ρ r ` s : τ Γ ρ ` s : ()
Γ ρ ` try { [r](l) ⇒ s0 } rewind { s } : τ

[Rewind]

Extended Translation Rules:

SJ try { [r](l) ⇒ s0 } rewind { s } Kρ = (Λr ⇒ λl ⇒ SJ s0 Kr) T J ρ K (LiftDyn SJ s Kρ)

Auxiliary Definitions:

LiftDyn f : ∀a. Cps R a → Cps R a
LiftDyn f = Λa ⇒ λm ⇒ λk ⇒ m (λx ⇒ f (λu ⇒ k x))

Figure 15 Extension of Λρwith dynamic wind (Λρ [Dyn]).

I Example 16. Let us look at a larger example in Figure 16, where we use dynamic wind
to save the state of an open file upon leaving a region and restore it when we re-enter it.
We define a function withFile that opens a file and passes a reference to the opened file to
the given program prog. We install an unwind handler that closes the file whenever control
jumps across it, and a rewind handler that reopens the file and seeks to the position where
we left off whenever control resumes. If the program prog uses a non-determinism effect, for
example via handleForkList, multiple forks will restart reading from the same file position.

This example does not define a safe API for file access because users of withFile have access
to the raw file handle. But with regions it is easily possible to define a safe API in terms of
withFile.

The translation in Figure 15 defines the semantics of the second half of dynamic wind
in pure System F. The evidence variable l is bound to a computation that pushes the
rewinding statement s onto the continuation. In general, evidence contains both rewinding
and unwinding statements. This can also be seen in Example 4.9. Here we pass the evidence
l2 ⊕ l1, which contains the unwind and rewind code, to prog.

While dynamic wind works for resources like files that are recoverable, if we want to
combine general control operators like effect handlers (Subsection 4.6) with arena allocation
(Subsection 4.2), our conceptual framework highlights a problem: When we deallocate the
arena upon leaving the region, there is no way we can recover it upon resumption. Region-
based memory management and multi-shot delimited control seem to be fundamentally
incompatible. However, based on our computational interpretation of evidence, we can offer
safe behavior:

1. When leaving a region, we can deallocate the arena. When we would re-enter the arena’s
region, we abort with an exception. Since we only throw an exception when we actually
try to resume into a region containing a deallocated arena, this makes region-based
memory management viable for many programs.

2. When leaving a region, we can evacuate the arena to some garbage collected heap and,
for example, add a reference count, or switch to manual memory management. When we
re-enter the arena’s region, we re-install it from the heap.

Both of these are unsatisfactory for the special case of one-shot continuations. For these,
better approaches exist. We leave integrating these into our conceptual framework to future
work.

Schuster, Brachthäuser, and Ostermann 25

def withFile[r0, t](
prog: [r](GlobalRef File, r v r0) →r t

) at r0 {
val fileRef = newGlobalRef(openFile("book.txt"));
val posnRef = newGlobalRef(0);
try { [r1](l1) ⇒

try { [r2](l2) ⇒
val result = prog[r2](fileRef, l2 ⊕ l1);
closeFile(getGlobalRef(fileRef));
return result

} rewind {
val file = openFile("book.txt");
setGlobalRef(fileRef, file);
seekFile(file, getGlobalRef(posnRef))

}
} unwind {

val file = getGlobalRef(fileRef);
setGlobalRef(posnRef, filePosn(file));
closeFile(file)

}
}

Figure 16 Example program in Λρ [Eff, Fin, Dyn] using dynamic wind.

As a final example, the next subsection illustrates the interaction between region-based
memory management and first-class coroutines.

4.9 Coroutines
To further investigate the combination of advanced control-flow mechanisms and region-
based memory management, we introduce first-class coroutines. Coroutines are suspended
computations that are either done or can be resumed to yield another coroutine [50, 38]. We
can implement coroutines in terms of effect handlers, using a recursive data type [25].

data Coroutine r t = Done t | More (Cap r () (Coroutine r t))

The common implementation of coroutines as state machines [3] arises from defunctionaliza-
tion [14] of the stored continuations. There are two interesting kinds of interaction between
region-based resource management and first-class coroutines.

I Example 17. First, consider what happens when we allocate a resource outside of the
coroutine. This example should not and does not typecheck.

arena { [r1](a1, l1) ⇒
val coroutine = try { [r2](yield, l2) ⇒

// use both the arena and the coroutine
do(yield, (), 0); alloc(a1, 99, l2); do(yield, (), 0)
return (Done(()))

} with { ((), resume) ⇒ return More(resume) };
return coroutine // does not typecheck

}

TR 2021

26 All About That Stack

The coroutine uses arena a1. We can not return the coroutine, because it would leave the
region where it is safe to resume it.

I Example 18. Second, consider what happens when we allocate a resource inside of the
coroutine. Let us assume the following example that defines a coroutine that yields twice.

val coroutine = try { [r1](yield, l1) ⇒
do(yield, (), 0);
arena { [r2](a2, l2) ⇒ do(yield, (), l2) }
return (Done(()))

} with { ((), resume) ⇒ return More(resume) };

The second yield is performed from within a fresh arena region r2. Having to use evidence
l2 highlights that for the second yield, and only there, we have to evacuate the arena. Local
allocation of arenas are fine, as long as we do not yield out of them.

Again, since coroutines are often resumed exactly once, we would like to add special support
for this use case. We could for example require users to manually copy and free suspended
coroutines, like in Multicore OCaml [15], which has discontinue and clone primitives for
resumptions, or in an extension of Koka [35], which requires manual finalization. Our
region-based type system rules out all unsafe combinations of coroutines with resources,
while allowing for a large number of safe uses.

4.10 Summary
In this section, we have extended our core language Λρ with numerous language features,
such as exceptions, local state, effect handlers, and dynamic wind. We uniformly presented
the semantics of those features as translations to pure System F, enabling a well-defined
composition into larger languages and allowing us to study interactions between the features.

5 Related Work

Out of the numerous works about regions for resource management, the one most closely
related, and indeed which has been the basis of our work, is [31], which in turn is based on [20].
Kiselyov and Shan provide a library for region-based resource management in Haskell. They
also propose to use regions for resources other than memory, introduce explicit subregioning
witnesses, and properly handle builtin Haskell exceptions. They demonstrate how types
and regions are inferred, which we do not discuss. Their approach perfectly fits into our
conceptual framework, and allows us to extend their approach and discuss control effects
beyond handling of builtin exceptions.

The non-trivial operational interaction between operators for delimited control and
dynamic binding, or more general continuation marks, has been discussed before [32, 19, 18].
Our conceptual framework supports these use cases and cleanly connects the type level and
the operational semantics.

Makholm [37] and Phan et al. [40] discuss region-based memory management in the logic
programming languages Prolog and Mercury respectively. Harris [23] discuss the interaction
between exceptions and atomic blocks in software transactional memory in Java. It would
be interesting to see if the challenges that they address can be cast into our conceptual
framework and if we could reproduce their solutions.

Our treatment of effect handlers in Section 4.6 follows recent developments in type systems
for effect handlers [8, 52, 5, 54]. Our evidence terms are a generalization of the evidence

Schuster, Brachthäuser, and Ostermann 27

vectors proposed by Xie et al. [51] and our formal treatment of the operational semantics is
inspired by their concept of evidence correspondence. They introduce the property of scoped
resumptions and dynamically check that it holds. We statically enforce this property.

Our CPS-based semantics of exceptions, our control operator, and effect handlers is
closely related to the one presented by Schuster et al. [44]. However, they do not support
effect-polymorphic functions, which can be expressed within our framework. Our translation
of effect handlers to System F is similar to the one given in Appendix B of [27].

Kiselyov and Ishii [30] present a Haskell library for effect handlers based on a variant
of the free monad in Haskell. Their library supports user-defined effects and handlers and
they provide a range of pre-defined effects like exceptions, non-determinism, and state.
They also discuss a region effect for safe and automatic allocation and disposal of resources,
which works in the presence of an exception effect. Other effects, like non-determinism, are
explicitly ruled out by the type system when they would be used across a region. The biggest
difference to our work is that they reify the structure of the program as a free monad and
then write interpreters over this structure, whereas we translate programs to iterated CPS.
They understand regions as effects, we understand regions as parts of the stack and, at least
for the case of arenas with exceptions, we provide a proof of safety. A more minor difference
is that we pass arenas explicitly while they index nested regions by a type-level natural
number for disambiguation.

Leijen [35] reports on an extension of the programming language Koka with support for
resources and finalization. This approach requires sophisticated modification of the language
runtime, whereas our approach can be explained as a translation to pure System F. They
allow for more complex finalization patterns, where users explicitly run the finalizers of a
resumption. This is to avoid running finalizers on linearly used resumptions.

Ahman and Bauer [1] present another approach to resources in the presence of algebraic
effects and handlers: Runners. They guarantee that finalizers are run exactly once by
requiring runners to always resume exactly once. It is very useful to have this guarantee. If
the only control effect are exceptions, we offer the same guarantee, but we do not prove it. We
go further and discuss arbitrary control effects with arbitrary nesting where we cannot offer
such a guarantee. We present an operational semantics that relates resource management
to the stack and a denotational semantics that translates programs to iterated CPS. Their
denotational semantics translates programs to essentially a free monad.

6 Conclusion

We presented a unified treatment of region-based resource management and control effects
in a language with types and effects. It rests on the central idea that a region denotes a
part of the runtime stack. We have formalized the connection between type-level regions
and the actual shape of the runtime stack during evaluation. We have demonstrated that
our conceptual framework can incorporate a large number of different language features
and discussed their non-trivial interaction. All of these features are bound together by a
translation to continuation-passing style and a denotational interpretation of evidence as
answer type coercions, which further emphasizes the understanding of regions as a property
of the runtime context.

However, there are a couple of remaining challenges that we leave to future work. The
language we presented cannot support more exotic uses of delimited control, like for example
dynamically overwriting an exception handler after capturing the continuation. This changes
the region the next statement runs in, so we need region modification which is exactly answer-

TR 2021

28 REFERENCES

type modification in our CPS-based semantics. Moreover, while the interaction between
finalizers and multiple invocations of the current continuation is problematic, linear use of
the continuation is unproblematic. Currently we have no special provisions to incorporate
this knowledge.

Our conceptual framework, which already supports many uses of delimited control, will
form the foundation upon which we will build these future investigations.

References

1 D. Ahman and A. Bauer. Runners in action. In P. Müller, editor, Programming Languages
and Systems, pages 29–55, Cham, 2020. Springer International Publishing. ISBN 978-3-
030-44914-8.

2 Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Development,
Coq’Art:The Calculus of Inductive Constructions. Springer-Verlag, 2004.

3 G. Bierman, C. Russo, G. Mainland, E. Meijer, and M. Torgersen. Pause’n’play: Formal-
izing asynchronous C#. In Proceedings of the European Conference on Object-Oriented
Programming, pages 233–257, Berlin, Heidelberg, 2012. Springer.

4 D. Biernacki, M. Piróg, P. Polesiuk, and F. Sieczkowski. Abstracting algebraic effects.
Proc. ACM Program. Lang., 3(POPL):6:1–6:28, Jan. 2019. ISSN 2475-1421.

5 D. Biernacki, M. Piróg, P. Polesiuk, and F. Sieczkowski. Binders by day, labels by night:
Effect instances via lexically scoped handlers. Proc. ACM Program. Lang., 4(POPL),
Dec. 2019. doi: 10.1145/3371116.

6 J. I. Brachthäuser and P. Schuster. Effekt: Extensible algebraic effects in Scala (short
paper). In Proceedings of the International Symposium on Scala, New York, NY, USA,
2017. ACM. doi: 10.1145/3136000.3136007.

7 J. I. Brachthäuser, P. Schuster, and K. Ostermann. Effect handlers for the masses.
Proc. ACM Program. Lang., 2(OOPSLA):111:1–111:27, Oct. 2018. ISSN 2475-1421. doi:
10.1145/3276481.

8 J. I. Brachthäuser, P. Schuster, and K. Ostermann. Effekt: Capability-passing style
for type- and effect-safe, extensible effect handlers in Scala. Journal of Functional
Programming, 2020. doi: 10.1017/S0956796820000027.

9 J. I. Brachthäuser, P. Schuster, and K. Ostermann. Effects as capabilities: Effect handlers
and lightweight effect polymorphism. Proc. ACM Program. Lang., 4(OOPSLA), Nov.
2020. doi: 10.1145/3428194. URL https://doi.org/10.1145/3428194.

10 E. Brady. Idris 2: Quantitative type theory in action. Technical report, University of
St Andrews, Scotland, UK, 2020. URL https://www.type-driven.org.uk/edwinb/
papers/idris2.pdf.

11 Y. Cong, L. Osvald, G. M. Essertel, and T. Rompf. Compiling with continuations, or
without? whatever. Proc. ACM Program. Lang., 3(ICFP):79:1–79:28, July 2019. ISSN
2475-1421. doi: 10.1145/3341643. URL http://doi.acm.org/10.1145/3341643.

12 O. Danvy. On evaluation contexts, continuations, and the rest of computation. 02 2004.
13 O. Danvy and A. Filinski. Abstracting control. In Proceedings of the Conference on LISP

and Functional Programming, pages 151–160, New York, NY, USA, 1990. ACM.
14 O. Danvy and L. R. Nielsen. Defunctionalization at work. In Proceedings of the Conference

on Principles and Practice of Declarative Programming, pages 162–174, 2001. ISBN
1-58113-388-X.

15 S. Dolan, L. White, and A. Madhavapeddy. Multicore OCaml. In OCaml Workshop,
2014.

https://doi.org/10.1145/3428194
https://www.type-driven.org.uk/edwinb/papers/idris2.pdf
https://www.type-driven.org.uk/edwinb/papers/idris2.pdf
http://doi.acm.org/10.1145/3341643

REFERENCES 29

16 R. K. Dybvig, S. L. Peyton Jones, and A. Sabry. A monadic framework for delimited
continuations. Journal of Functional Programming, 17(6):687–730, 2007.

17 M. Felleisen. The theory and practice of first-class prompts. In Proceedings of the
Symposium on Principles of Programming Languages, pages 180–190, New York, NY,
USA, 1988. ACM.

18 M. Flatt and R. K. Dybvig. Compiler and runtime support for continuation marks. In
Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2020, page 45–58, New York, NY, USA, 2020. Association
for Computing Machinery. ISBN 9781450376136. doi: 10.1145/3385412.3385981. URL
https://doi.org/10.1145/3385412.3385981.

19 M. Flatt, G. Yu, R. B. Findler, and M. Felleisen. Adding delimited and composable control
to a production programming environment. In Proceedings of the International Conference
on Functional Programming, page 165–176, New York, NY, USA, 2007. Association for
Computing Machinery. ISBN 9781595938152. doi: 10.1145/1291151.1291178. URL
https://doi.org/10.1145/1291151.1291178.

20 M. Fluet and G. Morrisett. Monadic regions. In Proceedings of the Ninth ACM SIGPLAN
International Conference on Functional Programming, ICFP ’04, page 103–114, New
York, NY, USA, 2004. Association for Computing Machinery. ISBN 1581139055. doi:
10.1145/1016850.1016867. URL https://doi.org/10.1145/1016850.1016867.

21 D. P. Friedman and C. T. Haynes. Constraining control. In Proceedings of the Symposium
on Principles of Programming Languages, pages 245–254. ACM, 1985.

22 D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J. Cheney. Region-based
memory management in cyclone. In Proceedings of the ACM SIGPLAN 2002 Conference
on Programming Language Design and Implementation, PLDI ’02, page 282–293, New
York, NY, USA, 2002. Association for Computing Machinery. ISBN 1581134630. doi:
10.1145/512529.512563. URL https://doi.org/10.1145/512529.512563.

23 T. Harris. Exceptions and side-effects in atomic blocks. Science of Computer
Programming, 58(3):325 – 343, 2005. ISSN 0167-6423. doi: https://doi.org/10.
1016/j.scico.2005.03.005. URL http://www.sciencedirect.com/science/article/
pii/S0167642305000687. Special Issue on Concurrency and synchonization in Java
programs.

24 C. T. Haynes. Logic continuations. The Journal of Logic Programming, 4(2):157–176,
1987.

25 C. T. Haynes, D. P. Friedman, and M. Wand. Obtaining coroutines from continuations.
Computer languages, 11(3-4):143–153, 1986.

26 R. Hieb and R. K. Dybvig. Continuations and concurrency. In Proceedings of the Second
ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming, PPOPP
’90, pages 128–136, New York, NY, USA, 1990. ACM.

27 D. Hillerström, S. Lindley, B. Atkey, and K. Sivaramakrishnan. Continuation passing
style for effect handlers. In Formal Structures for Computation and Deduction, volume 84
of LIPIcs. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2017.

28 R. M. Hughes. A novel representation of lists and its application to the function
“reverse”. Information Processing Letters, 22(3):141–144, 1986. ISSN 0020-0190. doi:
https://doi.org/10.1016/0020-0190(86)90059-1.

29 A. Kennedy. Compiling with continuations, continued. In Proceedings of the International
Conference on Functional Programming, pages 177–190, New York, NY, USA, 2007.
ACM.

TR 2021

https://doi.org/10.1145/3385412.3385981
https://doi.org/10.1145/1291151.1291178
https://doi.org/10.1145/1016850.1016867
https://doi.org/10.1145/512529.512563
http://www.sciencedirect.com/science/article/pii/S0167642305000687
http://www.sciencedirect.com/science/article/pii/S0167642305000687

30 REFERENCES

30 O. Kiselyov and H. Ishii. Freer monads, more extensible effects. In Proceedings of the
Haskell Symposium, pages 94–105, New York, NY, USA, 2015. ACM.

31 O. Kiselyov and C.-c. Shan. Lightweight monadic regions. In Proceedings of the Haskell
Symposium, Haskell ’08, New York, NY, USA, 2008. ACM.

32 O. Kiselyov, C.-c. Shan, and A. Sabry. Delimited dynamic binding. In Proceedings of the
International Conference on Functional Programming, pages 26–37, New York, NY, USA,
2006. ACM.

33 J. Launchbury and S. L. Peyton Jones. Lazy functional state threads. In Proceedings of the
ACM SIGPLAN 1994 Conference on Programming Language Design and Implementation,
PLDI ’94, page 24–35, New York, NY, USA, 1994. Association for Computing Machinery.
ISBN 089791662X. doi: 10.1145/178243.178246. URL https://doi.org/10.1145/
178243.178246.

34 D. Leijen. Structured asynchrony with algebraic effects. In Proceedings of the Workshop
on Type-Driven Development, pages 16–29, New York, NY, USA, 2017. ACM.

35 D. Leijen. Algebraic effect handlers with resources and deep finalization. Technical
Report MSR-TR-2018-10, Microsoft Research, April 2018.

36 P. B. Levy, J. Power, and H. Thielecke. Modelling environments in call-by-value pro-
gramming languages. Information and Computation, 185(2):182–210, 2003.

37 H. Makholm. A region-based memory manager for prolog. In Proceedings of the 2nd
International Symposium on Memory Management, ISMM ’00, page 25–34, New York,
NY, USA, 2000. Association for Computing Machinery. ISBN 1581132638. doi: 10.1145/
362422.362434. URL https://doi.org/10.1145/362422.362434.

38 A. L. D. Moura and R. Ierusalimschy. Revisiting coroutines. ACM Trans. Program. Lang.
Syst., 31(2):6:1–6:31, Feb. 2009. ISSN 0164-0925.

39 K. Pauwels, T. Schrijvers, and S.-C. Mu. Handling local state with global state. In
Proceedings of Mathematics of Program Construction (MPC). Springer, 2019.

40 Q. Phan, Z. Somogyi, and G. Janssens. Runtime support for region-based memory
management in mercury. In Proceedings of the 7th International Symposium on Mem-
ory Management, ISMM ’08, page 61–70, New York, NY, USA, 2008. Association for
Computing Machinery. ISBN 9781605581347. doi: 10.1145/1375634.1375644. URL
https://doi.org/10.1145/1375634.1375644.

41 G. D. Plotkin and M. Pretnar. Handling algebraic effects. Logical Methods in Computer
Science, 9(4), 2013.

42 J. C. Reynolds. Definitional interpreters for higher-order programming languages. In
Proceedings of the ACM annual conference, pages 717–740, New York, NY, USA, 1972.
ACM.

43 P. Schuster and J. I. Brachthäuser. Typing, representing, and abstracting control. In
Proceedings of the Workshop on Type-Driven Development, pages 14–24, New York, NY,
USA, 2018. ACM. doi: 10.1145/3240719.3241788.

44 P. Schuster, J. I. Brachthäuser, and K. Ostermann. Compiling effect handlers in capability-
passing style. Proc. ACM Program. Lang., 4(ICFP), Aug. 2020. doi: 10.1145/3408975.
URL https://doi.org/10.1145/3408975.

45 D. Sitaram and M. Felleisen. Control delimiters and their hierarchies. LISP and Symbolic
Computation, 3(1):67–99, Jan 1990.

46 A. Timany, L. Stefanesco, M. Krogh-Jespersen, and L. Birkedal. A logical relation
for monadic encapsulation of state: Proving contextual equivalences in the presence of
runst. Proc. ACM Program. Lang., 2(POPL), Dec. 2017. doi: 10.1145/3158152. URL
https://doi.org/10.1145/3158152.

https://doi.org/10.1145/178243.178246
https://doi.org/10.1145/178243.178246
https://doi.org/10.1145/362422.362434
https://doi.org/10.1145/1375634.1375644
https://doi.org/10.1145/3408975
https://doi.org/10.1145/3158152

REFERENCES 31

47 M. Tofte and J.-P. Talpin. Implementation of the typed call-by-value λ-calculus using
a stack of regions. In Proceedings of the Symposium on Principles of Programming
Languages, POPL ’94, page 188–201, New York, NY, USA, 1994. ACM. doi: 10.1145/
174675.177855.

48 M. Tofte and J.-P. Talpin. Region-based memory management. Inf. Comput., 132
(2):109–176, Feb. 1997. ISSN 0890-5401. doi: 10.1006/inco.1996.2613. URL https:
//doi.org/10.1006/inco.1996.2613.

49 M. Tofte, L. Birkedal, M. Elsman, N. Hallenberg, and P. Sestoft. Programming with
regions in the ml kit (for version 4). 10 2001.

50 A. Wang and O. Dahl. Coroutine sequencing in a block structured environment. BIT
Numerical Mathematics, 11:425–449, 1971.

51 N. Xie, J. I. Brachthäuser, D. Hillerström, P. Schuster, and D. Leijen. Effect handlers,
evidently. Proc. ACM Program. Lang., 4(ICFP), Aug. 2020. doi: 10.1145/3408981. URL
https://doi.org/10.1145/3408981.

52 Y. Zhang and A. C. Myers. Abstraction-safe effect handlers via tunneling. Proc. ACM
Program. Lang., 3(POPL):5:1–5:29, Jan. 2019. ISSN 2475-1421.

53 Y. Zhang, G. Salvaneschi, Q. Beightol, B. Liskov, and A. C. Myers. Accepting blame for
safe tunneled exceptions. In Proceedings of the Conference on Programming Language
Design and Implementation, pages 281–295, New York, NY, USA, 2016. ACM.

54 Y. Zhang, G. Salvaneschi, and A. C. Myers. Handling bidirectional control flow. Proc.
ACM Program. Lang., 4(OOPSLA), Nov. 2020. doi: 10.1145/3428207. URL https:
//doi.org/10.1145/3428207.

TR 2021

https://doi.org/10.1006/inco.1996.2613
https://doi.org/10.1006/inco.1996.2613
https://doi.org/10.1145/3408981
https://doi.org/10.1145/3428207
https://doi.org/10.1145/3428207

	1 Introduction
	1.1 Overview
	1.2 Contributions

	2 Main Ideas
	2.1 Arena-based Memory Management
	2.2 Exception Handling
	2.3 Combining Arenas and Exceptions
	2.4 Regions and Evidence

	3 A Calculus of Regions –
	3.1 Syntax
	3.2 Typing
	3.2.1 Typing of Statements
	3.2.2 Typing of Expressions
	3.2.3 Typing of Evidence

	3.3 Arenas
	3.3.1 Region Polymorphism and Subregioning Evidence

	3.4 Exceptions
	3.5 Operational Semantics
	3.5.1 Reduction Semantics

	3.6 Region- and Evidence Correspondence

	4 Combining Regions and Effects via Continuation-Passing Style
	4.1 Translation of the Base Language
	4.2 Arenas
	4.3 Exceptions
	4.4 Finalizers
	4.5 Control Operators
	4.6 Effect Handlers
	4.7 Local State
	4.8 Dynamic Wind
	4.9 Coroutines
	4.10 Summary

	5 Related Work
	6 Conclusion

