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Effect handlers encourage programmers to abstract over repeated patterns of complex control flow. As of

today, this abstraction comes at a significant price in performance. In this paper, we aim to achieve abstraction

without regret for effect handlers.

We present a language for effect handlers in capability-passing style (λCap) and an implementation of

this language as a translation to simply-typed lambda calculus in iterated continuation-passing style. A suite

of benchmarks indicates that the novel combination of capability-passing style and iterated CPS enables

significant speedups over existing languages with effect handlers or control operators. Our implementation

technique is general and allows us to generate code in any language that supports first-class functions.

We then identify a subset of programs for which we can further improve the performance and guarantee

full elimination of the effect handler abstraction. To formally capture this subset, we refine λCap to λλCap with a

more restrictive type system. We present a type-directed translation for λλCap that inserts staging annotations

and prove that no abstractions or applications related to effect handlers occur in the translated program. Using

this second translation we observe additional speedups in some of the benchmarks.
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1 INTRODUCTION

Effect handlers [Plotkin and Pretnar 2009, 2013] offer high-level control-flow abstractions that
are user definable and composable. They have been used successfully to develop libraries for
asynchronous programming, libraries for concurrent system programming, programming with
coroutines, stream processing, and many more [Bračevac et al. 2018; Dolan et al. 2017, 2015;
Hillerström and Lindley 2016; Kammar et al. 2013; Leijen 2017b; Piróg et al. 2018]. Effect handlers
naturally allow users to combine these libraries and the corresponding domain-specific abstractions
in one program.

As of today, this extra abstraction comes with a cost in performance [Leijen 2017a; Pretnar et al.
2017]. There are two different aspects to the performance of such abstractions: enabling compile
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time optimization [Pretnar et al. 2017; Wu and Schrijvers 2015] and optimizing the language runtime
[Leijen 2017a]. In this work, we are only concerned with the former, with the ultimate goal to fully
eliminate the abstraction overhead of effect handlers at compile time. Efficient implementations of
effect handlers would enable programmers to develop many general-purpose or domain-specific
control flow constructs as libraries without sacrificing performance.
The meaning of effectful programs depends on their evaluation context [Wright and Felleisen

1994]. In languages with support for effect handlers, the handler implementations are part of this
evaluation context. Typically, language runtimes perform a dynamic lookup to find a matching
handler implementation for an effect operation. These dynamic lookups incur a run-time penalty
and, more importantly to this work, they preclude compile-time optimizations. To evaluate the call
to an effect operation typically includes two tasks at runtime: firstly, performing a linear lookup
through the evaluation context to find the corresponding effect handler and, secondly, capturing a
segment of the context delimited by that very handler [Dolan et al. 2014; Hillerström et al. 2017;
Kammar et al. 2013; Leijen 2017c]. In general, the full evaluation context can only be known at run
time. However, if certain information about the context is available at compile time, we can use it
to specialize effectful programs.
In this paper, we present a new approach to efficiently compile effect handlers. We proceed in

two steps, reflected in two languages λCap and λλCap.
The first language, λCap, features lexically scoped effect handlers in capability-passing style.

Capability-passing style is an alternative to the traditional dynamic lookup for the handler. Instead
of searching the implementation on the stack, handler implementations are passed as additional
arguments to their use-site. It has been shown [Biernacki et al. 2020; Zhang and Myers 2019] that
lexically scoped handlers offer improved reasoning to the programmer. It has also been conjectured
[Biernacki et al. 2020] that they may enable more efficient implementations. In this work, we answer
this conjecture positively. Using capability passing and iterated continuation passing style (CPS)
to implement control yields speedups of up to 150x over existing languages with effect handlers
on standard benchmarks from the literature. Intended as a core language, λCap makes two kinds
of static information explicit. Firstly, it supports effect handlers in explicit capability-passing style

[Brachthäuser and Schuster 2017; Brachthäuser et al. 2020; Zhang and Myers 2019]. By making
the flow of capabilities explicit, an optimizing compiler can specialize programs to known effect
handler implementations. Secondly, the type-system of λCap tracks the stack shape of an effectful
computation: a list of types corresponding to the types expected by enclosing handlers. Guided by
the stack shape, we then perform an iterated CPS translation [Danvy and Filinski 1990; Schuster and
Brachthäuser 2018]. We implement stack shape polymorphism by monomorphization1, a common
technique in performance-oriented compilers [Alexandrescu 2010; Anderson et al. 2016; Stroustrup
1997]. This specializes effectful programs to their stack shape.

The second language, λλCap, has the same operational semantics as λCap but refines the type system
tomake capabilities second class. This way, the type system restricts the class of programs expressible
in λλCap as a sub-language of λCap for which we always statically know handler implementations.
Yet, it still covers a large class of programs. Statically knowing both the handler for each effect
operation and the stack shape, allows us to reduce all abstractions related to effect handlers at
compile time (Theorem 5.5). This yields an additional speedup for a total of up to 409x.
To evaluate the performance, in our benchmarks we compare code generated from λCap and

λλCap with Koka [Leijen 2017c], Multicore OCaml [Dolan et al. 2014], and Chez Scheme [Dybvig
2006]. The benchmarks indicate that our translation offers significant speedups for examples, which

1http://mlton.org/Monomorphise
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heavily use effects and handlers, and shows competitive performance for examples with only simple
uses of effect handlers.
Specifically, we make the following contributions:

• We present the language λCap with effect handlers in explicit capability-passing style (Sec-
tion 3).
• We present a translation from λCap to STLC (Section 3.3) that preserves well-typedness
(Theorem 5.1). Effect safety follows as a corollary (Corollary 5.2): pure programs do not have
unhandled effects at run time.
• Our approach is general as it eliminates the need for a special runtime for effect handlers.
We can target any language that supports first class functions.
• We present the language λλCap. It treats capabilities as second class and characterizes a
sublanguage for which we can guarantee efficient compilation.
• We present a translation for λλCap into a two-level lambda calculus. All abstractions and
applications related to effect handlers are statically evaluated and removed from the generated
program (Section 4).
• We prove that the translation never fails, always terminates, and that generated programs
will never go wrong (Theorem 5.3), which again entails effect safety.
• We prove that translated λλCap programs are free of overhead introduced by the handler
abstraction (Theorem 5.5).
• We implemented both, λCap and λλCap and performed benchmarks, which suggest that the
code we generate is competitive with or faster than Koka, Multicore OCaml, and Chez Scheme
code using control effects (Section 5.2).

2 OVERVIEW

In this section, we present an informal overview of our approach, which will then be explained in
detail in the subsequent sections.
When programming with effect handlers, we write effectful functions using effect operations.

Figure 1a shows an example program, adapted from Danvy and Filinski [1990] and written in λCap.
The effectful function choice uses the two capabilities flip and fail to choose a number between the
given argument n and 1. If the n is smaller than 1, choice fails. Otherwise it flips a coin to decide if
it immediately returns n or recursively calls itself with a decremented argument. The signature of
effect operations is given by the following two global signatures.

effect Flip : () → Bool effect Fail : () → Void

We write the function choice in capability-passing style [Brachthäuser and Schuster 2017], that
is, it explicitly abstracts over the capabilities flip and fail. In the body of the function, we use
the capabilities (e.g., do flip()) to call an effect operation. Explicitly binding capabilities leads
to what Biernacki et al. [2020] refer to as lexical effect handlers. Effect handlers (and capability
abstractions) are binders and effect operations are resolved lexically.

Handling effects. To give meaning to effect operations, we enclose effectful programs in han-
dlers. For example, we can implement Flip and Fail to gather all choices into a list. The function
handledChoice does exactly this. Handlers are written as handle . . . in . . . and provide capabil-
ities. In our example, the handlers for Flip and Fail in function handledChoice bind capabilities
to the names flip and fail, which we explicitly pass to the call of choice. To implement an effect
operation, a handler gets access to the current continuation at the invocation of the effect operation.
At the same time, the handler acts as a delimiter for these continuations. In our example, the handler
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def choice[flip : Flip, fail : Fail](n) {
if (n < 1) do fail()
else if (do flip())
return n

else choice(n − 1)

}

def handledChoice(n) {
handle flip = Flip((), k) ⇒

append(do k(True), do k(False)) in
handle fail = Fail((), k) ⇒ Nil in
Cons(choice[lift flip, fail](n), Nil)

}

(a) Source program written in λCap in capability-passing style.

let choice = λflip⇒ λfail⇒
letrec loop = λn⇒ λk1 ⇒ λk2 ⇒
if (n < 1) then fail () k1 k2
else flip () (λx⇒ λk3 ⇒
if x then k1 n k3 else loop (n − 1) k1 k3)
k2

in loop

let handledChoice = λn⇒
let flip = λ () ⇒ λk⇒
append (k True) (k False) in

let fail = λ () ⇒ λk1 ⇒ λk2 ⇒ k2 Nil in
let liftedFlip = λ () ⇒ λk1 ⇒ λk2 ⇒

flip () (λx⇒ k1 x k2) in
choice liftedFlip fail n
(λx1 ⇒ λk2 ⇒ k2 (Cons x1 Nil))
(λx2 ⇒ x2)

(b) Code generated from λCap in iterated CPS.

letrec choiceFlipFail = λn⇒ λk1 ⇒ λk2 ⇒
if (n < 1) then k2 Nil
else

let x1 = k1 n k2 in
let x2 = choiceFlipFail (n − 1) k1 k2 in

append x1 x2

let handledChoice = λn⇒
choiceFlipFail n
(λx1 ⇒ λk2 ⇒ k2 (Cons x1 Nil))
(λx2 ⇒ x2)

(c) Code generated from λλCap with inlined handlers (highlighted in grey).

Fig. 1. Running example in our language λCap and its translation into CPS.

for Flip calls the continuation k twice, once with True and once with False. It expects the results of
these two calls to be lists, appends them, and answers with the appended list. The implementation
for fail ignores k and immediately answers with the empty list.

Effect safety. The answer type is the return type of the computation that a handler encloses [Danvy
and Filinski 1990]. The stack shape of a computation describes the list of answer types at its enclosing
handlers, from outermost to innermost. In our example, both handlers have the same answer type
IntList and the stack shape at the call-site of choice is thus IntList, IntList. To achieve answer-type
safety (i.e., capturing and applying the continuation is type safe) and effect safety (i.e., all effects
are eventually handled), the type system of λCap indexes the types of capabilities and the types of
effectful functions by the stack shape they assume. Adapting notation by Zhang and Myers [2019],
we write the type of the choice function at this call-site as:

capabilities
︷                                             ︸︸                                             ︷

[Flip]IntList, IntList → [Fail]IntList, IntList → Int→

effectful return type
︷              ︸︸              ︷

[Int]IntList, IntList

The function choice is an effectful function that takes a capability for Flip, a capability for Fail,
and an Int, and returns an Int. It assumes a stack shape IntList, IntList. To safely invoke an effect
operation, the stack shape of the computation at the invocation site and the stack shape of the
capability have to agree. Since we created the capability flip at the outer handler, its type is
[ Flip ]IntList. To use it inside of the inner handler, as an argument to choice, our effect system
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requires us to explicitly adapt it using lift. This way, the capability can be used in a context with
the larger stack shape IntList, IntList.

Compilation of λCap. We translate our source language λCap to STLC (with letrec) in iterated
continuation-passing style (CPS) [Danvy and Filinski 1990]. Directed by the statically known
stack shape, our translation introduces one continuation argument for every delimiting handler.
Figure 1b shows the result of specializing choice to the stack shape IntList, IntList at its call-site.
The generated code uses two continuations corresponding to the two delimiters for Flip and Fail.
At its call-site we supply five arguments to choice: two capabilities, the argument n, and two
continuations corresponding to the two delimiters. The first continuation represents the context
around choice at its call-site. It is itself in CPS and takes a continuation. The second continuation is
the empty continuation. Capability flip has been translated at stack shape IntList and so abstracts
over only one continuation. We now see that lift has operational meaning as it adjusts flip to be
compatible to a context with two continuations by composing them.
If we were using the same choice function at a different call-site, within for example three

enclosing handlers, it would be typed at a different stack shape and consequently specialized
differently:

let choice = λflip⇒ λfail⇒
letrec loop = λn⇒ λk1 ⇒ λk2 ⇒ λk3 ⇒
if (n < 1) then fail () k1 k2 k3
else flip () (λx⇒ λk4 ⇒ λk5 ⇒ if x then k1 n k4 k5 else loop (n − 1) k1 k4 k5 ) k2 k3

in loop

We abstract over one more continuation and apply functions to one more continuation (highlighted
in grey). Through monomorphization we have created a second specialized version of the same
function. Operationally, only the number of elements in the stack shape, i.e. the number of con-
tinuations, matters, not their order. In a typed setting, though, we have to specialize to the types
contained in the stack shape. While this translation specializes choice to different stack shapes, it
still abstracts over capabilities flip and fail.

Compilation of λλCap. Our running example does not treat capabilities as first class [Osvald et al.
2016] and so can be typed under the more restrictive rules of λλCap, which enforce a second-class
usage of capabilities. Consequently, we can use our second translation, which works for λλCap only, to
also specialize the code to the concrete handler implementations. In this translation we distinguish
between static and dynamic abstractions and reduce capability abstractions and applications
statically. This way, the implementations of Flip and Fail provided by the corresponding handlers
are inlined into the body of choice. Figure 1c shows the final code we generate for this example.
We chose the name choiceFlipFail to reflect the specialization to these handler implementations.
The cost of the handler abstraction has been fully removed and the function is specialized to
both the effect operation implementations and the stack shape at its call-site. There is no explicit
runtime search for a matching handler like in Koka [Leijen 2017c], Eff [Plotkin and Pretnar 2013],
Frank [Lindley et al. 2017], Multicore OCaml [Dolan et al. 2014], or Helium [Biernacki et al. 2020].
Instead, the implementations of the effect operations have been inlined into the body of choice.
Correspondingly, the call-site in handledChoice does not provide capabilities anymore, it only
delimits the control effects. There is no search for a delimiter on the stack, either. We directly invoke
the corresponding continuation. Finally, lifting of the capability is performed during translation.
To sum up our approach: Programs are written in explicit capability-passing style. Effectful

functions and capabilities are indexed by the stack shape. Capabilities need to be lifted explicitly to
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Syntax of Terms:

Expressions

e ::= True | False | . . . primitive constants

| x term variables

| (x : τ ) ⇒ s lambda abstraction

| fix f (x : τ ) ⇒ s recursive abstraction

| [c : [ F ]τ ] ⇒ e capability abstraction

| e[h] capability application

Statements

s ::= e(e) application

| val x ← s; s sequence

| return e return

| do h(e) effect call

| handle c = h in s effect handler

Capabilities

h ::= c | k capability variables

| F(x, k) ⇒ s handler implementation

| lift h lifted capability

Syntax of Types:

Types

τ ::= Int | Bool | . . . base types
| τ→ [ τ ]τ effectful function type

| [ F ]τ → τ capability function type

Operation Names

F ::= Flip | Fail | Emit | Resumei | . . .

Operation Signatures

Σ ::= ∅ | Σ, F : τ→ τ
′

Type Environment

Γ ::= ∅ | Γ, x : τ

Capability Environment

Θ ::= ∅ | Θ, c : [ F ]τ

Stack Shape

τ ::= ∅ | τ , τ

Fig. 2. Syntax of terms and types (λCap).

adjust them to the stack shape. Using this information, we specialize functions written in λCap to
work with the correct number of continuations. For a refined sub-language λλCap, we guarantee
that capabilities are always inlined. We specialize functions to their context and remove the cost
associated with handler abstractions. In the following sections we will formally develop these ideas.

3 CAPABILITY PASSING

In this section, we formally introduce λCap ś a language with effects, handlers, and capabilities.
The presentation follows the calculus by Zhang and Myers [2019] with some notable differences
discussed in Section 6.1.

3.1 Syntax of Terms

Figure 2 defines the syntax of λCap. Like other presentations of languages with effect handlers [Hiller-
ström et al. 2017; Kammar and Pretnar 2017; Pretnar 2015], our language is based on a fine-grain
call-by-value lambda calculus [Levy et al. 2003]. That is, we syntactically distinguish between
expressions (often also referred to as łvaluesž) and statements (also called łcomputationsž). Only
statements can have effects. In this sense, our expressions are łtrivialž while statements are łse-
riousž [Reynolds 1972]. Other than most effect languages, which do not represent capabilities
explicitly, we also syntactically distinguish between expressions and capabilities.

Expressions. As usual, the syntax of expressions includes primitive constants (like 5, True, andNil),
function abstraction (i.e., (x : τ ) ⇒ s), and recursive function abstraction (i.e. fix f ((x : τ ) ⇒ s)).
Additionally, capability abstraction (i.e., [c : [ F ]τ ] ⇒ e) binds a capability c for effect operation F,
which is usable in the expression e in a context with stack shape τ . An application of an effectful
function to an argument can have control effects and thus is not an expression but a statement. In
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contrast, capability application (i.e., e[h]) is pure and results in an expression. Similarly, primitive
operators (like append(e, e)) cannot have control effects and are trivial expressions.

Statements. Both, function application (i.e., e(e′)) and calling capabilities (i.e., do h(e)) are con-
sidered effectful. The latter corresponds to an effect call in other languages with effect handlers.
Expressions are embedded into statements with return e and we use the syntax val x ← s; s′ to
sequence the evaluation of the two statements s and s′. The result of s is available in s′ under the
name x. Finally, we handle effectful programs with handle c = h in s. The capability variable c will
be bound to the handler implementation h in the statement s. The handler also installs a delimiter
for the continuation that is captured when c is used.

Capabilities. We separate expression variables from capability variables. The latter are drawn
from a different namespace (e.g., flip, fail, or k). Similarly, we use the meta-variables x for term
variables and c and k for capability variables. This stratification into expressions and capabilities
is not strictly necessary in λCap, but it will become important in λλCap. To facilitate comparison
we use the same syntax of terms for both languages. The lift h construct adjusts a capability h to
be compatible to a larger stack shape. Capabilities are handler implementations constructed with
F(x, k) ⇒ s. The argument x and the continuation k are bound in the implementation of the effect
operation given by s. As we will see, we model continuations as capabilities and thus k has to be
invoked with do k(e).

3.2 Type System of λCap

Types include base types (e.g., Int and Bool), effectful function types τ→ [ τ ′ ]τ , and capability
abstractions [ F ]τ → τ . There are two equally valid intuitions about effectful function types.
One can read a function type as "Given an argument of type τ , the function produces a result τ ′,
potentially using control effects in τ ł. However, there is also a second reading žGiven τ , the function
can only be called in a context with stack shape τ to produce a result of type τ ′". We will mostly
apply the latter intuition. Stack shapes are comma separated lists of types τ , representing the types
at the delimiters (i.e. handlers) from outermost to innermost. They serve a similar purpose like
effect rows of Koka [Leijen 2017c] or Links [Hillerström and Lindley 2016]. Like effect rows in Koka
and Links, our stack shapes guarantee that our control effects are handled and all continuations
are correctly delimited. However, unlike effect rows, stack shapes are ordered. As an example,
the stack shape Int, String describes a context with an outer handler at type Int and an inner
handler at type String. Capability abstractions take a capability parameter. Like effectful functions,
the type of each capability parameter [ F ]τ is restricted to a specific stack shape τ . We use the
meta-variable F to denote a globally fixed set of operation names and assume a global signature
environment Σ that maps operation names to their input and output types. We model continuations
as capabilities and include a family Resumei in the set of operation names. Each syntactic occurrence
of handle . . . in . . . induces a distinct operation name Resumei. The typing of the corresponding
use of handle fully determines the signature of Resumei in Σ.
Following the distinction between expressions and capabilities, we also assume two separate

environments. A type environment Γ that assigns variables x to types τ and a capability environment
Θ that associates capability variables c with operation names F and stack shapes τ . This, again, is
not necessary in λCap but will be in λλCap.

3.2.1 Typing Rules. The typing rules in Figure 3 are defined by three mutually recursive typing
judgements ś one for each syntactic category. The judgement form Θ Γ ⊢stm s : [ τ ]τ assigns
a pair of a type τ and a stack shape τ to the statement s. Note that [ τ ]τ is not one type but two
separate outputs of the judgement.
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Expression Typing. Θ Γ ⊢exp e : τ
Γ(x) = τ

Θ Γ ⊢exp x : τ
[Var]

Θ Γ, x : τ ⊢stm s : [ τ ′ ]τ

Θ Γ ⊢exp (x : τ ) ⇒ s : τ→ [ τ ′ ]τ
[Lam]

Θ Γ, f : τ→ [ τ ′ ]τ , x : τ ⊢stm s : [ τ ′ ]τ

Θ Γ ⊢exp fix f (x : τ ) ⇒ s : τ→ [ τ ′ ]τ
[Fix]

Θ, c : [ F ]τ Γ ⊢exp e : τ

Θ Γ ⊢exp [c : [ F ]τ ] ⇒ e : [ F ]τ → τ
[Cap-Lam]

Θ Γ ⊢exp e : [ F ]τ → τ Θ Γ ⊢cap h : [ F ]τ

Θ Γ ⊢exp e[h] : τ
[Cap-App]

Statement Typing.

Θ Γ ⊢stm s : [ τ ]τ
Θ, c : [ F ]τ , τ Γ ⊢stm s : [ τ ]τ , τ Θ Γ ⊢cap h : [ F ]τ , τ

Θ Γ ⊢stm handle c = h in s : [ τ ]τ
[Handle]

Θ Γ ⊢stm s : [ τ ]τ Θ Γ, x : τ ⊢stm s′ : [ τ ′ ]τ

Θ Γ ⊢stm val x ← s; s′ : [ τ ′ ]τ
[Val]

Θ Γ ⊢exp e : τ

Θ Γ ⊢stm return e : [ τ ]τ
[Ret]

Θ Γ ⊢exp e : τ ′→ [ τ ]τ Θ Γ ⊢exp e′ : τ ′

Θ Γ ⊢stm e(e′) : [ τ ]τ
[App]

Θ Γ ⊢cap h : [ F ]τ Σ(F) = τ ′→ τ Θ Γ ⊢exp e : τ ′

Θ Γ ⊢stm do h(e) : [ τ ]τ
[Do]

Capability Typing.

Θ Γ ⊢cap h : [ F ]τ
Θ Γ ⊢cap h : [ F ]τ

Θ Γ ⊢cap lift h : [ F ]τ , τ
[Cap-Lift]

Θ(c) = [ F ]τ

Θ Γ ⊢cap c : [ F ]τ
[Cap-Var]

Θ, k : [ Resumei ]τ Γ, x : τ ′ ⊢stm s : [ τ ]τ Σ(F) = τ ′→ τ ′′ Σ(Resumei) = τ ′′→ τ i fresh

Θ Γ ⊢cap F(x, k) ⇒ s : [ F ]τ , τ
[Cap-Handler]

Fig. 3. Typing rules for λCap.

The typing rules include standard rules for variables (Var), abstraction (Lam), recursive abstrac-
tion (Fix), and application (App). Sequencing with rule Val requires that the stack shapes of the
two statements s and s′ agree. Similarly in rule Do the stack shape of the used capability and the do
statement have to agree. In rule Ret, the resulting statement is compatible with any stack shape τ .

The rules for capability abstraction (Cap-Lam) and application (Cap-App) are similar to the corre-
sponding rules for value abstraction and application. However, capability abstraction introduces the
capability variable c in the capability environment Θ and capability application uses the capability
typing judgement Θ Γ ⊢cap h : [ F ]τ to check h against operation name F in stack shape τ .

The three most interesting rules are Handle, Cap-Lift, and Cap-Handler. They require some
detailed explanation. Handlers introduce delimiters for the continuations captured by the effect
operation they handle. This becomes visible in the rule Handle. While in the conclusion, we type a
statement handle c = h in s against a stack shape τ , the premises can assume a larger stack shape
τ , τ . By installing the delimiter, statement s can safely use the capability c, which has additional
control effects at the answer type τ . To guarantee answer type safety, the return type τ of the
delimited statement s and the innermost answer type of the larger stack shape τ , τ have to agree.
Our type system does not support implicit effect subtyping. Instead, capabilities need to be lifted
explicitly. Take the following ill-typed example:

handle c1 = h1 in handle c2 = h2 in do c1(x)

We bind a capability variable c1 at an outer handler, but want to use it inside of a nested inner
handler. While using the capability within the inner handler would be safe, the stack shapes
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do not match up. To account for this, we allow explicit lifting of capabilities with lift h. In the
example, we could thus invoke do (lift c1)(x). Rule Cap-Lift adjusts a capability h typed against
[ F ]τ to be compatible with a larger stack shape [ F ]τ , τ . This is in spirit similar to adaptors in
the language Frank [Convent et al. 2020], to lift in Helium [Biernacki et al. 2019], and to inject in
Koka [Leijen 2018]. However, instead of adjusting arbitrary effectful expressions, we only perform
the adjustments on capabilities. As we will see, this allows us to guarantee that the lifting itself is
performed at compile time. Finally, rule Cap-Handler checks the body of a handler implementation
F (x, k) ⇒ s against a stack shape τ , τ . A handler implementation for an effect operation F takes
an argument of type τ ′ and a continuation k, which can be thought of as an effectful function
τ
′′→ [ τ ]τ . We model resumptions as effect operations. The body s of the handler is evaluated in

stack shape τ , that is, outside of the delimiter that introduced it.

3.3 Translation of λCap to STLC

In this subsection, we describe the semantics of λCap in terms of a translation to simply-typed lambda
calculus [Barendregt 1992], extended with a standard letrec operator to express fix. We translate
λCap into iterated CPS where capabilities are still present at runtime. In the translation of λλCap
(Section 4.2), we use a two-level lambda calculus as the target, marking some abstractions as static
and others as dynamic. This allows us to prevent administrative redexes and, more importantly, to
eliminate all abstractions related to handlers and capabilities.
Figure 4 defines the translation on types and mutually recursive translations of the different

syntactic categories of terms. We extend the translation of Schuster and Brachthäuser [2018] to the
setting of effect handlers. At its heart, our translation is thus an iterated CPS translation [Danvy
and Filinski 1990] but building on the control operator shift0 [Danvy and Filinski 1989; Materzok
and Biernacki 2012] rather than shift, because it more closely fits effect handlers [Forster et al. 2017;
Hillerström et al. 2017; Kammar et al. 2013]. In Theorem 5.1, we show that our translation takes
well-typed λCap programs to well-typed STLC programs.

3.3.1 Target Language. The target of our translation is a call-by-value STLC extended with letrec,
base types, and primitive operations. As usual, we write lambda abstraction as λx ⇒ e, but use the
infix notation e @ e′ for application [Nielson and Nielson 1996]. We sometimes use let bindings in
the target language assuming the standard shorthand: let x = e in e′ � (λx⇒ e′)@ e.

3.3.2 Translation of Types. The translation of types T J · K maps base types to base types in
STLC and effectful function types τ→ [ τ ′ ]τ to functions from τ to effectful computations CJ τ ′ Kτ .
Capability function types are translated to function types in the target language, where the argument
type [ F ]τ (for Σ(F) = τ→ τ

′) is translated like an effectful function type τ→ [ τ ′ ]τ .
The meta function CJ τ Kτ computes the type in STLC corresponding to an effectful computation

with return type τ in stack shape τ . Programs in an empty stack cannot use any control effects
and consequently are not CPS translated. The translation of non-empty stack shapes recursively
translates the rest of the stack shape. It adds one layer of CPS translation with this recursively
translated type as answer type. For example, we have the following translations:

CJ Bool K∅ � Bool
CJ Bool K Int � (Bool→ Int) → Int
CJ Bool K String, Int � (Bool→ CJ Int KString) → CJ Int KString

� (Bool→ ((Int→ String) → String))
→ ((Int→ String) → String)

We can see that our translation performs a CPS transformation for each entry in the stack shape τ .
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Translation of Types:

T J Int K = Int
T J τ→ [ τ ′ ]τ K = T J τ K→ CJ τ ′ Kτ

T J [ F ]τ → τ K = T J [ F ]τ K→ T J τ K
T J [ F ]τ K = T J τ K→ CJ τ ′ Kτ
where Σ(F) = τ→ τ

′

CJ τ K∅ = T J τ K
CJ τ Kτ , τ ′ = (T J τ K→ CJ τ ′ Kτ ) → CJ τ ′ Kτ

Translation of Expressions:

EJ True K = True
EJ x K = x

EJ (x : τ ) ⇒ s K = λx ⇒SJ s Kτ
where Θ Γ ⊢exp (x : τ ) ⇒ s : τ→ [ τ ′ ]τ

EJ fix f (x : τ ) ⇒ s K = letrec f = (λx ⇒SJ s Kτ ) in f
where Θ Γ ⊢exp fix f (x : τ ) ⇒ s : τ→ [ τ ′ ]τ

EJ [c : [ F ]τ ] ⇒ e K = λc ⇒ EJ e K
EJ e[h] K = EJ e K @ HJ h Kτ
where Θ Γ ⊢cap h : [ F ]τ

Translation of Statements:

SJ e(e′) Kτ = EJ e K @ EJ e′ K

SJ val x ← s; s′ K∅ = let x = SJ s K∅ in SJ s′ K∅
SJ val x ← s; s′ Kτ , τ =

λk ⇒SJ s Kτ , τ @ (λx ⇒SJ s′ Kτ , τ @ k)

SJ return e K∅ = EJ e K
SJ return e Kτ , τ = λk ⇒ k @ EJ e K

SJ do h(e) Kτ = HJ h Kτ @ EJ e K

SJ handle c = h in s Kτ =

let c = HJ h Kτ , τ in SJ s Kτ , τ @ (λx ⇒SJ return x Kτ )

where Θ Γ ⊢stm handle c = h in s : [ τ ]τ

Translation of Capabilities:

HJ c Kτ = c

HJ F(x, k) ⇒ s Kτ , τ = λx ⇒ λk ⇒SJ s Kτ

HJ lift h K∅, τ = λx ⇒ λk ⇒ k @ (HJ h K∅ @ x)

HJ lift h Kτ , τ , τ ′ =

λx ⇒ λk ⇒ λk′ ⇒HJ h Kτ , τ @ x @ (λy ⇒ k @ y @ k′)

Fig. 4. Translation of λCap to STLC.

3.3.3 Translation of Expressions. In the translation of expressions, we map capability abstraction
to ordinary function abstraction and capability application to ordinary function application. The
translation of function abstraction and capability application is type directed: the stack shape τ
guides the translation of the function body and the handler, respectively.
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3.3.4 Translation of Statements. The translation of statements SJ s Kτ is indexed by a stack shape
τ . Source statements s with return type τ in stack shape τ are translated to effectful computations
of type CJ τ Kτ . In the case of a pure statement without effects, the stack shape is empty and we
do not perform a CPS translation. Returning translates to just the returned expression and, to
preserve sharing of results, sequencing translates to a let binding. In the case where the stack shape
is non-empty, we perform a single layer of CPS-translation. We translate the use of a capability
(do h(e)) to a function application. The translation of handle c = h in s binds c to the translation
of h in the translated body s. Importantly, it also delimits effects by applying the translated body to
the empty continuation.

3.3.5 Translation of Capabilities. To translate handler implementations, the body s is translated as
a statement with a smaller stack shape τ . This models the fact that the handler implementation is
evaluated outside of the delimiter it introduces. The translation of a handler implementation is only
defined for non-empty stack shapes τ , τ . Our typing rules make sure that this is always the case.
The translation of lifted capabilities looks a bit involved. The goal is to make capability h, typed
against a stack shape τ , usable with an extended stack shape τ , τ . Since the number of elements
in the stack shape corresponds to the number of continuation arguments, we have to adapt the
capability to take one more continuation. In the case of a stack shape with at least two elements, the
translation abstracts over the argument x and the first two continuations k and k′. It then applies
the translated capability to the argument and a single continuation that is the composition of k and
k′. The case of a singleton stack shape never occurs in a closed well-typed program and is purely
listed for our formalization.

Example. Let us translate the following example in the empty stack shape:

SJ handle c = h in val x ← do c(True); return e K∅

Assuming an answer type of Int, we obtain:

let c = HJ h KInt in
SJ val x ← do c(True); return e KInt @ (λx ⇒SJ return x K∅)

︷                                                                          ︸︸                                                                          ︷

λk ⇒SJ do c(True) KInt @ (λx ⇒SJ return e KInt @ k)
︷     ︸︸     ︷

c @ True

︷                  ︸︸                  ︷

λk′⇒ k′ @ EJ e K

By SJ return x K∅ = x, the overall example translates to:

let c = HJ h KInt in
λk ⇒ c @ True @ (λx ⇒ (λk′⇒ k′ @ EJ e K) @ k) @ (λx ⇒ x)

This illustrates that capability passing translates to normal function abstraction and application
and that we support control effects by translating to iterated CPS.

4 ZERO COST EFFECT HANDLERS

We now refine λCap to a sub-language λλCap. On this sub-language we are able to fully eliminate
the overhead introduced by handler abstractions. We present a second translation, this time to
2-level lambda calculus. This allows us to prove that all abstractions and applications related to
effect handlers will be statically reduced at compile time.
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Syntax of Types:

Dynamic Types

τ ::= Int | Bool | . . . base types

| τ→ [ τ ]τ effectful function type

Static Types

σ ::= [ F ]τ → σ capability function type

| τ dynamic type

Operation Names

F ::= Flip | Fail | Emit | Resumei | . . .

Operation Signatures

Σ ::= ∅ | Σ, F : τ→ τ
′

Type Environment

Γ ::= ∅ | Γ, x : τ

Capability Environment

Θ ::= ∅ | Θ, c : [ F ]τ

Stack Shape

τ ::= ∅ | τ , τ

Typing Rules:

Expression Typing. Θ Γ ⊢exp e : σ
Γ(x) = τ

Θ Γ ⊢exp x : τ
[Var]

Θ Γ, x : τ ⊢stm s : [ τ ′ ]τ

Θ Γ ⊢exp (x : τ ) ⇒ s : τ→ [ τ ′ ]τ
[Lam]

Θ Γ, f : τ→ [ τ ′ ]τ , x : τ ⊢stm s : [ τ ′ ]τ

Θ Γ ⊢exp fix f (x : τ ) ⇒ s : τ→ [ τ ′ ]τ
[Fix]

Θ, c : [ F ]τ Γ ⊢exp e : σ

Θ Γ ⊢exp [c : [ F ]τ ] ⇒ e : [ F ]τ → σ
[Cap-Lam]

Θ Γ ⊢exp e : [ F ]τ → σ Θ Γ ⊢cap h : [ F ]τ

Θ Γ ⊢exp e[h] : σ
[Cap-App]

Fig. 5. Syntax of types and expression typing rules for λλCap ś syntax of terms and typing rules for statements
and capabilities are the same as for λCap.

4.1 Syntax of λλCap

Figure 5 lists the syntax of types of λλCap. The syntax of terms is exactly the same as the one for
λCap. In the syntax of types we now distinguish between dynamic types and static types, similarly
to the syntactic separation of expressions and capabilities (this difference is highlighted in grey).
Static types are sequences of capability parameters ending in a dynamic type, which ensures that
all capability arguments come before any other arguments. This is the only difference to λCap in
Figure 2. Later in this section, we will see that terms of static types will be eliminated (due to
inlining and specialization) during translation while terms of dynamic types will appear in the
generated program.

Changes to the typing rules for λλCap (Figure 5) compared to λCap (Figure 3) are also highlighted
in grey. Importantly, while the judgement form Θ Γ ⊢exp e : σ may assign a static type σ to
expressions, the typing rules for statements and capabilities remain unchanged. Their premises still
require expressions to be typed against a dynamic type τ . This way, we make sure that all effectful
functions are always fully applied to the corresponding capabilities.

We treat capabilities as second class [Osvald et al. 2016]. That is, they cannot be returned from a
function. This becomes evident in the typing rules. In the rule Ret (Figure 3):

Θ Γ ⊢exp e : τ

Θ Γ ⊢stm return e : [ τ ]τ
[Ret]

the returned pure expression e has to be typed against a dynamic type τ . Expressions thus are
always fully specialized (that is, applied to capabilities) before they can be returned. Similarly,
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argument expressions in rule App are required to be of a dynamic type τ ′, which means that we
cannot abstract over capability abstractions.
We model resumptions as capabilities, which makes them second class. This is in order to

guarantee full elimination of the handler abstraction at compile time. Since capabilities will be
inlined, so will resumptions.

4.2 Translation of λλCap to 2-level Lambda Calculus

The programs generated by the translation of λCap in Figure 4 abstract over handler implementations
and pass them along at runtime. In the translation of λλCap, we avoid this passing of capabilities at
run time and statically specialize functions to the capabilities that they use. Maybe more importantly,
we also specialize the inlined capabilities to the context they are used in. This enables optimizations
across effect calls.

Figure 6 presents the refined translation from λλCap to 2-level lambda calculus [Jones et al. 1993;
Nielson and Nielson 1996; Taha and Sheard 2000]. The translation is the same as the one in Figure 4
except for annotations to distinguish static from dynamic program fragments. The annotations
are automatically inserted as part of the definition of our translation. In Theorem 5.3 we prove
łstage-time correctnessž, i.e., that we never confuse static and dynamic functions. This is only
possible because the type system of λλCap restricted the use of capabilities, making them second
class.

We want to guarantee that certain redexes never occur in the generated program. In particular,
there are two classes of redexes that we want to avoid. Firstly, we avoid generating administrative
beta redexes in our CPS translation. This standard use multi-level lambda calculi in the translation
of control operators has been introduced by Danvy and Filinski [1992]. We build on a variant,
which is generalized to the setting of iterated CPS [Schuster and Brachthäuser 2018]. Even though
not listed in Figure 4, in our benchmarks we also do this for the unrestricted language in Figure 2.
Secondly, we avoid generating redexes associated with the effect handler abstraction. The significant
contribution of this paper is that handling effects, calling effect operations, and lifting capabilities
does not introduce any redexes in the generated program.

4.2.1 2-level Lambda Calculus. The general idea of multi-level lambda calculi [Nielson and Nielson
1996] is to mark some abstractions and applications as static and some as residual. Static redexes
will be reduced during translation, while residual redexes will be generated, that is, residualized. We
adopt the terminology of Taha and Sheard [1997] and refer to the annotations as staging annotations.
We use standard notation that we briefly review. On the type level we use red color and an underline
for types of residual terms (i.e. terms that will be residualized). For example Int→ Int is the type of
a generated function from integers to integers. We write types of static (i.e. stage time) terms in blue
with an overbar. For example Int→ Int is the type of a static function between residualized integers.
Similarly, on the term level we write residual terms in red with an underline. For example, 1 + 2
is the term that adds the integer one and the integer two. This redex will occur in the generated
program. We write terms that we evaluate during translation in blue with an overbar. For example

(λx ⇒ x) @ 5 will statically evaluate to the term 5. We use CJ τ K τ to describe the type of residual
effectful computations. The whole computation type CJ τ Kτ as defined in Figure 4 is residualized.

The type CJ τ Kτ represents static computations. Importantly, while the answer types are residual
(e.g., τ ) the structure of the computation is static.
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Translation of Types:

T J Int K = Int
T J τ→ [ τ ′ ]τ K = T J τ K→ CJ τ ′ Kτ

T J [ F ]τ → σ K = T J [ F ]τ K→ T J σ K

T J [ F ]τ K = T J τ K→ CJ τ ′ Kτ
where Σ(F) = τ→ τ

′

CJ τ K∅ = T J τ K
CJ τ Kτ , τ ′ = (T J τ K→ CJ τ ′ Kτ ) → CJ τ ′ Kτ

CJ τ K∅ = T J τ K

CJ τ Kτ , τ ′ = (T J τ K→ CJ τ ′ Kτ ) → CJ τ ′ Kτ

Translation of Expressions:

EJ True K = True
EJ x K = x

EJ (x : τ ) ⇒ s K = λx ⇒ Reifyτ SJ s Kτ
where Θ Γ ⊢exp (x : τ ) ⇒ s : τ→ [ τ ′ ]τ

EJ fix f (x : τ ) ⇒ s K =

letrec f = (λx ⇒ Reifyτ SJ s Kτ ) in f
where Θ Γ ⊢exp fix f (x : τ ) ⇒ s : τ→ [ τ ′ ]τ

EJ [c : [ F ]τ ] ⇒ e K = λc ⇒ EJ e K

EJ e[h] K = EJ e K @ HJ h Kτ
where Θ Γ ⊢cap h : [ F ]τ

Translation of Statements:

SJ e(e′) Kτ = Reflectτ (EJ e K @ EJ e′ K)

SJ val x ← s; s′ K∅ = let x = SJ s K∅ in SJ s′ K∅
SJ val x ← s; s′ Kτ , τ =

λk ⇒SJ s Kτ , τ @ (λx ⇒SJ s′ Kτ , τ @ k)

SJ return e K∅ = EJ e K

SJ return e Kτ , τ = λk ⇒ k @ EJ e K

SJ do h(e) Kτ = HJ h K @ EJ e K

SJ handle c = h in s Kτ =

let c = HJ h Kτ , τ in SJ s Kτ , τ @ (λx ⇒SJ return x Kτ )

where Θ Γ ⊢stm handle c = h in s : [ τ ]τ

Translation of Capabilities:

HJ c Kτ = c

HJF(x, k) ⇒ s Kτ , τ = λx ⇒ λk ⇒SJ s Kτ

HJ lift h K∅, τ = λx ⇒ λk ⇒ k @ (HJ h K∅ @ x)

HJ lift h Kτ , τ , τ ′ =

λx ⇒ λk ⇒ λk′ ⇒HJ h Kτ @ x @ (λy ⇒ k @ y @ k′)

Fig. 6. Translation of λλCap to 2-level lambda calculus.
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4.2.2 Reify and Reflect. To mediate between residual effectful computations and static effectful
computations, we define two mutually recursive meta functions Reify and Reflect.

Reify τ : CJ τ K τ → CJ τ Kτ
Reify∅ s � s

Reify τ ,τ s � λk ⇒ Reifyτ (s @ (λx ⇒ Reflectτ (k @ x)))

Reflect τ : CJ τ K τ → CJ τ Kτ
Reflect∅ s � s

Reflect τ ,τ s � λk ⇒ Reflectτ (s @ (λx ⇒ Reifyτ (k @ x)))

The meta function Reify converts a static computation of type CJ τ Kτ to a residual computation of
type CJ τ Kτ . In other words, it residualizes the statement. It is defined by induction over the stack
shape, introducing one continuation argument for every type in the stack shape. Dually, the meta
function Reflect converts a residual computation of type CJ τ Kτ to a static computation of type

CJ τ Kτ . For every type in the stack shape, it generates one application to a reified continuation.
This way, functions always abstract over and are always applied to all arguments and continuations.

4.2.3 Expressions. We always translate constants, variables and effectful functions to residual
terms. The translation of effectful functions and effectful recursive functions requires us to reify
function bodies. While we do not reduce function applications present in the original program, we
want to perform capability passing at compile time. Therefore, we translate capability functions
to static abstractions and capability application to static application. This ensures that they are
reduced at compile time and no redexes involving capability passing will be generated.

4.2.4 Statements. We translate statements typed against [ τ ]τ to static computations of typeCJ τ Kτ .
We want to preserve function applications, so we generate an application and reflect the resulting
statement. To preserve sharing, we translate sequenced pure statements to a residual let binding.
When translating sequencing and returning of effectful statements, we mark all continuation
abstractions and applications as static. This allows us to avoid administrative beta-redexes. We
translate the binding of capability variables in handlers and the use of capabilities to static binding
and application. This ensures that capabilities are fully inlined at their call-site.

4.2.5 Capabilities. Handler implementations translate to static functions that take a static argument
and a static continuation. In contrast to effectful functions, we do not reify the bodies of handler
implementations. This way, the context of a call to a capability will be inlined into the handler
implementation, which leads to the optimization across effect operations that we want to achieve.
Lifting a capability to be compatible with a larger stack shape is fully static as well: the composition
of contexts is performed at compile time. By inspecting the translation of do, handle and handlers,
we can observe that they only introduce static abstractions and applications. The translation is
designed to not generate any redexes associated with effect handlers.

Example. Applying the translation to 2-level lambda calculus to the example from Section 3.3,
we obtain

let c = HJ h KInt in

λk ⇒ c @ True @ (λx ⇒ (λk′ ⇒ k′ @ EJ e K) @ k) @ (λx ⇒ x)

which reduces statically to:

HJ h KInt@ True @ (λx ⇒ EJ e K)
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This illustrates that the handler implementation is inlined at the position of the call to the effect op-

eration. Furthermore, the continuation λx ⇒ EJ e K will be inlined into the handler implementation
at compile time.

Example. We specialize recursive functions to the handler implementations that they use at their
call-site. For example, we translate the expression

EJ [h : [ Fail ]Int] ⇒ fix f (x : Int) ⇒ val y← do h(); f(x) K

to the following static capability abstraction:

λh⇒ letrec f = λx⇒

ReifyInt (λk⇒ h @ () @ (λy⇒ (ReflectInt (f @ x)) @ k))

in f

At the call-site, the translated function will be statically applied to a capability. This way, the
function and all its recursive calls will be specialized to this capability. This also entails that the
recursive call can only occur in a context with the same stack shape and the same capabilities.

4.3 Abstracting over Handlers

Other than in λCap, capabilities in λλCap are second class [Osvald et al. 2016]. This allows us to
prove that they never appear in translated programs, but prevents us from writing certain kinds of
programs in λλCap. In particular, we cannot abstract over handlers as handler functions, a common
idiom in Koka for example. Consider the following example written in λCap following this idiom:

def handleFailList(prog : [ Fail ]IntList→ () → [ Int ]IntList) {
handle fail = Fail((), k) ⇒ Nil in prog[fail]()
}

We define a handler function that handles the Fail effect by discarding the continuation and
answering with the empty list. This handler is useful and such a definition might be part of the
standard library. However, this example is ruled out by the more restrictive type system of λλCap.
Being a parameter, prog has a dynamic type, but capability application prog[fail] demands that
prog has a static type. We thus cannot define handlers as handler functions in λλCap.
We can, however, still define and reuse handlers in multiple places. Consider the following

example using a hypothetical language construct defhandler:

defhandler handleFailList = Fail((), k) ⇒ Nil in
. . .

handle fail = handleFailList in . . .
. . .

This language construct is macro-expressible in λλCap as

defhandler c = h in e � ([c] ⇒ e) h

Because capability abstractions are reduced statically, the newly defined handler will be inlined at
all of its call sites, maintaining the guarantee that functions are specialized to the effect handlers.
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5 EVALUATION

We implemented3 λCap and λλCap as shallow embeddings into the dependently typed programming
language Idris [Brady 2013]. We use typed HOAS [Pfenning and Elliot 1988] and represent the
AST of residualized programs of type τ as values of a data type indexed by the type τ . We use the
host language Idris to both express source programs, as well as to express static abstractions and
applications. For example, the type Int→ Int would correspond to the Idris type Exp (Int→ Int)
and the type Int→ Int would correspond to the Idris type Exp Int→ Exp Int. Throughout our
implementation, we use dependent types to index source and target programs by their types,
including stack shapes, which we represent as a type-level list of types. For example the λCap type
Int→ [ Bool ]Int,String would correspond to the Idris type Exp (Int→ Eff [String, Int] Bool). Our
translation follows the inductive structure of this type-level list.

5.1 Theoretical Results

Our translations satisfy a few meta-theoretic properties. In our implementation, we were careful to
make these properties hold by construction. Firstly, our unstaged translation of λCap (as presented
in Figure 4) preserves well-typedness.

Theorem 5.1 (Typability of translated terms ś unstaged).

Θ Γ ⊢stm s : [ τ ]τ implies T JΘK,T JΓK ⊢ SJ s Kτ : CJ τ Kτ
Θ Γ ⊢cap h : [ F ]τ implies T JΘK,T JΓK ⊢ HJ h K : T J [ F ]τ K
Θ Γ ⊢exp e : τ implies T JΘK,T JΓK ⊢ EJ e K : T J τ K

Proof. By induction over the typing derivations and case distinction on the stack shapes ś see
Appendix C.1. □

Importantly, we obtain effect safety as corollary.

Corollary 5.2 (Effect safety). Given a closed statement s, if ∅ ∅ ⊢ s : [ τ ]∅ , then evaluating
SJ s K∅ will not get stuck.

Effect safety immediately follows from Theorem 5.1 and soundness of STLC. Well-typedness is
also preserved by the staged translation (Figure 6).

Theorem 5.3 (Typability of translated terms ś staged).

Θ Γ ⊢stm s : [ τ ]τ implies T JΘK,T JΓK ⊢ SJ s Kτ : CJ τ Kτ
Θ Γ ⊢cap h : [ F ]τ implies T JΘK,T JΓK ⊢ HJ h K : T J [ F ]τ K
Θ Γ ⊢exp e : σ implies T JΘK,T JΓK ⊢ EJ e K : T J σ K

Proof. By induction over the typing derivations and case distinction on the stack shapes ś see
Appendix C.2. □

Our translation thus takes well-typed source programs to well-typed 2-level lambda calculus
programs. From Theorem 5.3 and soundness of the 2-level lambda calculus follows stage-time

correctness: the translation only applies static functions statically and residualizes applications of
residual functions. In our implementation, we ensure this by distinguishing static and residual
expressions on the type level.
Stage time correctness means that code generation does not fail for well-typed programs:

Theorem 5.4 (Full residualization). Given a closed statement s, if ∅ ∅ ⊢ s : [ τ ]∅ then its

translation SJ s K∅ can be fully reduced to a residualized term.
3We submitted our implementation, generated code, benchmarking code and measurements as supplementary material.
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Proof. By Theorem 5.3, we have that ⊢ SJ s K∅ : CJ τ K∅. We can compute CJ τ K∅ = T J τ K.
By induction on the rules of T J · K, we get that translation of dynamic types τ results in a residual
type τ ′. Soundness of the 2-level lambda calculus guarantees that stage-time reduction will not get
stuck. Our translation does not introduce any static letrec, which guarantees termination. □

By Corollary 5.4 and soundness of the 2-level lambda calculus, it is easy to see that effect safety
(Corollary 5.2) also extends to the staged translation. That is, reducing the residualized term will
not get stuck.

Our careful separation of capability abstractions and applications from function abstractions and
applications in λλCap allows us to guarantee that abstracting over effect operations with handlers
does not incur any runtime overhead.

Theorem 5.5 (Full elimination). The translations of capability abstraction, capability application,

do h(e), handle c = h in s, F(x, k) ⇒ s, and lift h do not introduce any residual lambda abstractions

or applications, except for those in the translation of their subterms.

Proof. By inspection of our translation with staging annotations in Figure 6. All abstractions
and applications that the translations immediately introduce are marked as static. □

In particular, capability passing is performed statically, handlers are fully inlined, local continuations
are fully inlined, and continuations at the call-site of effect operations are inlined in the (already
inlined) handler implementations.
While our translation guarantees the elimination of effect handlers, there is still a cost that

originates from the use of control effects. Handled statements are translated with one more ele-
ment in the stack shape. To support continuation capture, effectful function abstractions are CPS
transformed and receive one additional continuation argument per stack shape entry, that is, for
every enclosing handler. In other words, the only additional cost per handler is induced by the
number of continuation arguments and materializes in Reify and Reflect.

5.2 Performance Results

We assess the performance of the code generated from λCap and λλCap and compare it to existing
languages with effect handlers and control effects. The benchmarked programs (Triple, Queens,
Count, and Generator) can be expressed in both λCap and λλCap. All except for Generator are taken
from the literature.

The results are shown in Figure 7. All benchmarks were executed on a 2.60GHz Intel(R) Core(TM)
i7 with 11GB of RAM. We compare our implementations with Koka (0.9.0) [Leijen 2017c], Multi-
core OCaml (4.06.1) [Dolan et al. 2014], and an implementation of delimited control operators in
Chez Scheme (9.5.3) [Dybvig et al. 2007]. For each comparison, we generate code in CPS in the
corresponding language (that is, JavaScript, OCaml, and Scheme) and make sure to use the same
primitive functions and data structures that the baseline uses. For each of the example functions we
generate code using the translations of λCap (Figure 4) and λλCap (Figure 6). In our implementation
of both translations, we additionally apply standard techniques [Danvy and Filinski 1992; Schuster
and Brachthäuser 2018] to avoid generating administrative eta redexes, although these are not
shown in Figure 4. We report the mean and standard deviation of the runtime of the programs
under consideration.
We report numbers for four example programs. The Triple program is inspired by the example

in Danvy and Filinski [1990]. It uses the running example choice from Section 2 to find triples of
numbers that sum up to a given target number. The Queens example places queens on a chess
board and is taken from Kiselyov and Sivaramakrishnan [2018]. The Count benchmark appears
in Kammar et al. [2013], Kiselyov and Ishii [2015], and Wu and Schrijvers [2015] and counts down
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Time in ms (Standard Deviation)

Benchmark Baseline λCap λλCap Native

Koka

Triple 2504.1 ±19.5 66.2 ±2.2 23.9 ±0.6 6.2 ±0.2

Queens (18) 403.4 ±9.3 170.8 ±1.7 171.4 ±1.2 161.9 ±4.1

Count (2K) 56.0 ±1.8 0.4 ±0.0 0.2 ±0.0 0.0 ±0.0

Generator (1K) 43.9 ±1.8 0.4 ±0.0 0.1 ±0.0 0.0 ±0.0

Chez Scheme

Triple 68.6 ±1.1 3.7 ±0.1 3.7 ±0.1 1.8 ±0.0

Queens (18) 93.7 ±3.5 89.6 ±0.6 88.1 ±1.0 89.5 ±1.2

Count (1M) 445.2 ±27.2 10.5 ±0.6 10.5 ±0.8 1.9 ±0.0

Generator (1M) 664.2 ±14.6 17.6 ±0.5 17.7 ±0.5 2.1 ±0.0

Multicore OCaml

Triple 25.0 ±2.4 4.5 ±0.1 2.4 ±0.1 2.0 ±0.1

Queens (18) 57.9 ±2.2 33.1 ±0.7 33.7 ±0.6 34.8 ±2.7

Count (1M) 72.5 ±0.9 19.4 ±0.5 7.5 ±0.2 2.8 ±0.0

Generator (1M) 93.9 ±1.3 18.3 ±0.5 10.3 ±0.3 3.9 ±0.1

Primes (1K) 32.2 ±0.6 29.0 ±0.6 22.8 ±0.4 N/A

Chameneos 26.7 ±0.6 32.7 ±1.0 28.7 ±0.9 N/A

Fig. 7. Comparing the performance of λCap and λλCap with Koka, Multicore OCaml, and Chez Scheme.

recursively using a single state effect. The Generator benchmark uses an effect operation to yield
numbers which are summed up by a calling function using a state effect.

We now discuss the setup and observations specific to each of the baselines we compare against.

Comparison with Koka. Koka compiles to JavaScript and uses a standard library of builtin func-
tions and data types also compiled to JavaScript. In our comparison with Koka, we do not generate
Koka but JavaScript code in CPS and use the same compiled standard library. Benchmarks were
executed using the JavaScript library benchmark.js4 on Node.js5 version 12.11.1. For the Count
and Generator benchmarks, we had to use a smaller initial state than in the other comparisons
because the code generated by Koka as well as the code generated by our translation leads to a
stack overflow for larger numbers. Koka already performs a selective CPS transformation. However,
removing the runtime search for handler implementations causes significant speedups.

Comparison with Multicore OCaml. Multicore [Dolan et al. 2014] is a fork of the OCaml compiler
[Leroy et al. 2017] that adds support for effect handlers. We compile the Multicore OCaml programs
with the multicore variant and our generated code with the standard variant of the ocamplopt
compiler (4.06.1). Each program is compiled to a standalone executable, and we measure the running
time with the bench program6. In our comparison with Multicore OCaml, we benchmarked two
additional examples from an online repository of Multicore OCaml examples7: Chameneos and
Primes. These two benchmarks exercise the use-case that Multicore OCaml was designed for, that
is, resuming continuations only once. Our translation always supports resuming continuations
multiple times, but still offers competitive performance. The two additional examples use native

4https://benchmarkjs.com/
5https://nodejs.org
6http://hackage.haskell.org/package/bench
7https://github.com/kayceesrk/effects-examples
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side effects like for example mutating a global queue which we make execute in the right order by
inserting let bindings as part of our translation.

Comparison with Monadic Delimited Control on Chez Scheme. We also assess the performance
of our generated code relative to a fast implementation of delimited continuations without any
effect handling code. For this comparison, we implemented the examples using ordinary functions
that capture the current continuation via shift0 [Danvy and Filinski 1989]. We use the library
described by [Dybvig et al. 2007] and compile the example programs as well as our generated
code with the Chez Scheme compiler [Dybvig 2006]. In all four benchmarks we do not observe
any speedup of the code generated from the translation of λCap over the code generated from the
translation of λλCap where we eliminate redexes during translation. We have investigated Chez
Scheme’s intermediate representation and confirmed that, after optimization, the code is indeed the
same for λCap and λλCap, except that sometimes a subexpression is let bound. Does this make the
restriction of λλCap and its translation in Figure 6 unnecessary? No, on the contrary: the type system
of λλCap is an important conceptual tool that guided us to a well-performing implementation where
optimal compilation is guaranteed. The fact that Chez Scheme can optimize the program similar to
our improved translation (Figure 6) can be seen as additional practical evidence for Theorem 5.5.

Benchmark results. The benchmark results are generally encouraging. They indicate that the
code we generate for λλCap (and λCap) is significantly faster than the languages we compare against.
For the Triple benchmark, we can observe speedups of 105x (λCap 38x) compared to Koka, 11x
(λCap 6x) compared to Multicore OCaml, and 19x for both implementations compared to Chez
Scheme. For the Count benchmark we observe speedups of 297x (λCap 150x) compared to Koka,
10x (λCap 4x) compared to Multicore OCaml, and 42x (λCap 43x) compared to Chez Scheme. For the
Generator benchmark we observe speedups of 409x (λCap 118x) compared to Koka, 9x (λCap 5x)
compared to Multicore OCaml, and 38x (λCap 38x) compared to Chez Scheme. All three benchmarks
extensively use control effects and yield optimization opportunities across effect operations for
us to exploit. In the other benchmarks, we observe some speedups as well. Interestingly, in the
Queens benchmark we do not observe any speedup between our unstaged translation and our
staged translation. It uses one effect operation in a single place and handles it as a loop, which our
staged translation immediately residualizes.

Comparison with hand-written code using native effects. As another point of reference, we have
implemented the benchmark examples and manually restructured the programs to avoid effect
handlers and use native effects instead. For example, we used native mutable state instead of effect
handlers. We were careful to keep the same number of library calls (for example append on lists).
The results are listed in column łNativež in Figure 7. In the benchmarks for Koka, where we compare
with the generated code in JavaScript, the time for the native benchmarks is below 0.05 and thus
displayed as 0.0. The results indicate that there is still an order of magnitude difference between
the code we generate as the translation of λλCap and the hand-written code using native effects.

6 RELATED WORK

We combine capability passing with an implementation of control effects by iterated CPS trans-
formation. This combination allows us to exploit static information and enables compile-time
optimizations of effect handlers. Applying some restrictions in λλCap, we are able to guarantee that
all overhead introduced by the effect handler abstraction is eliminated. In this section, we relate
our approach to existing work on capability passing, on compilation of effect handlers via CPS
transformation, on optimization of programs which use effect handlers, and on monad transformers.
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6.1 Capability Passing

Capability passing for effect handlers is not a new idea. Brachthäuser et al. [2017;2018;2020] es-
tablish capability-passing style as an implementation technique for effect handlers. They do not
present a formal calculus but use capability passing in their library embeddings of effect handlers.
To capture the continuation, they use a monadic implementation of multi-prompt delimited con-
tinuations [Dybvig et al. 2007]. Their capabilities are pairs of the handler implementation and a
prompt. The latter is necessary to enable capturing the part of the stack up to the corresponding
delimiter. Passing capabilities explicitly facilitates optimizations by the JVM. By using iterated CPS,
we go further and enable optimizations across effect calls.

Zhang andMyers [2019] present a language λ that employs capability passing (handler passing)
for abstraction safety. They demonstrate modular reasoning about effect-polymorphic higher-order
functions. Our calculus λCap is modeled after λ . An important difference is in our treatment
of effect types. Their effect types are sets of labels, where each label stands for an occurrence
of a delimiter in the program. In contrast, our effect types are ordered lists of types, where each
type is the answer type at an enclosing delimiter. Their primary goal is modular reasoning over
effect-parametric functions, while our goal is exploiting static information for efficient compilation.
Biernacki et al. [2020] build on the work by Brachthäuser and Schuster [2017] and Zhang and

Myers [2019] and present a language with lexically scoped effects. They argue that lexically scoped
effects improve reasoning. Explicitly binding effects also allows to refer to one particular effect
instance in the presence of multiple copies of the same effect. Their operational semantics does
not employ capability passing as they look up handler implementations based on a label when an
effect operation is called. Another difference is that they use an implementation of multi-prompt
delimited control to get access to the current continuation, while we translate to iterated CPS.

Kammar et al. [2013] present multiple translations of effect handlers into Haskell. They translate
handler implementations to type class instances, turning handlers into dictionary parameters of
effectful functions. This can be seen as some form of capability passing. Furthermore, they present
a translation that uses nested applications of the continuation monad for multiple handlers. This
translation is very similar to the translation of λCap to iterated CPS that we present here. However,
they rely on GHC to optimize the abstractions they introduce. They do not explicitly state their
assumptions for efficient code generation while, with λλCap, we make such assumptions explicit.

6.2 Implementing Control-Effects by CPS Translation

Hillerström et al. [2017] present an implementation technique for effect handlers by CPS trans-
formation. They also use a two-level lambda calculus to remove administrative redexes of the
CPS translation. An important difference is that their source language has dynamically bound
handler implementations, while we support lexically bound handlers via capability passing. There-
fore, in their translation of handlers, each handler matches on the effect operation at run time

to decide whether it should handle it or forward it to an outer handler. In contrast, we explicitly
pass handler implementations, which allows us to guarantee full inlining. Furthermore, in the
translation presented by Hillerström et al., functions are not specialized to their calling context.
In consequence, continuation capture across function boundaries still incurs significant runtime
overhead, while we fully remove the overhead of the handler abstraction. They report their curried
CPS translation to be a composition of an implementation of effect handlers [Forster et al. 2017]
and an implementation of delimited continuations in terms of a CPS transformation [Materzok and
Biernacki 2012]. Similarly, our type system and translation into iterated CPS is also close to the
one by Materzok and Biernacki [2012]. However, we simplify the type system by not supporting
answer-type modification, which makes our stack shapes lists rather than trees.
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Leijen [2017c] compiles algebraic effects by CPS transformation. For performance, the translation
is selective: distinguishing between pure and effectful parts of the program on the type level. Guided
by the types, only effectful parts of a program are CPS translated. Our work can be seen as a
generalization in that we do not only distinguish pure and effectful parts of the program, but track
the number of control effects in the type system. Guided by these types, we translate different parts
of the program to work with different numbers of continuation arguments.

We follow Schuster and Brachthäuser [2018] and represent stack shapes as list of answer types to
drive a type-directed translation into the CPS hierarchy. While their goal is to efficiently implement
control operators, our goal is the elimination of overhead introduced by effect handlers.

6.3 Optimization of Effect Handlers

Pretnar et al. [2017] show how to reduce the overhead incurred by using effect handlers by compile-
time optimizations. While their approach is to apply semantics preserving rewrite rules, we translate
effect handlers to a 2-level lambda calculus in CPS and apply beta-reductions at compile time. Our
approach has the advantage that our optimizations are semantics preserving by construction,
while they report their rewritings to be łfragile and have been postponedž [Saleh et al. 2018]. As a
downside, our translation might miss optimization opportunities that are specific to effect handlers
and only become apparent in a language where they are explicitly represented.

Wu and Schrijvers [2015] consider effectful programs as a free monad over a signature of effect
operations. They fuse multiple handlers to avoid building and then folding any intermediate free
monad structure in memory. They achieve excellent performance on a number of benchmarks,
which validates their optimization method. Their optimization crucially relies on inlining and
function specialization. Since their implementation uses Haskell and GHC, they use Haskell type
classes to trigger function specialization, but do not state the conditions for when this may or
may not happen. To get access to the current continuation, they use nested layers of the codensity
monad which is operationally the same as the continuation monad. This is a similarity to our
translation to nested layers of CPS.

6.4 Monad Transformers

Our lift h construct is remindful of lifting monad transformers [Liang et al. 1995]. Monad trans-
formers have been proposed as a modular way for writing interpreters for languages with different
effects. Today, monad transformers are used in Haskell as a library for effectful programming. Effect
handlers, similarly, can be used to modularly define interpreters with different effects and can be
embedded into languages as libraries for effectful programming. Monad transformers overload
monadic sequencing and returning specially for each effect and, moreover, the definition of lifting
depends on the lifted effects. In contrast, our translation of sequencing and lifting is always the same
(except in the pure case), regardless of the concrete effects. Practical uses of monad transformers
in Haskell heavily rely on inlining and specialization to exhibit good performance. However, the
conditions under which this specialization does or does not happen are not clearly stated. We
precisely specify the conditions under which we guarantee full elimination of effect handlers.

7 CONCLUSION AND FUTURE WORK

We have presented λCap, a language with effect handlers in explicit capability-passing style. We
then presented a second language λλCap, whose type system restricts programs to make it possible
to always statically know handler implementations. We have given a translation of λCap to STLC
that generates fast code. The translation of λλCap exploits this static knowledge to eliminate all
overhead introduced by abstracting over effect operations. The crucial ingredients are capability
passing and iterated CPS.
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Since λCap and λλCap expose details for the efficient compilation of effect handlers, in the future
we will investigate how to translate a more high-level language with effect handlers to λCap and
how to detect parts in the sub-language λλCap.

We generate code in CPS, which can be disadvantageous for some languages or virtual machines.
Targeting a language with support for the delimited control operator shift0, we could instead use
shift0 directly instead of translating to iterated CPS. However, implementing delimited control in
terms of iterated CPS is crucial to achieve compile-time optimization. It allows us to make use of
the static knowledge of the context around the invocation of effect operations.

We see potential for improvement in the future. It is common practice to compile to CPS [Kennedy
2007], an explicit representation of join points [Maurer et al. 2017], or both [Cong et al. 2019]. In the
future, we want to target an intermediate language with an explicit representation of continuations
and treat continuations differently from functions at compile time and run time. For example,
we could extend the intermediate language presented in [Kennedy 2007] generalizing from two
continuations to an arbitrary number.

Implementing programming languages involves a series of tradeoffs, usually on spectrum between
dynamic and static. This is no different for the implementation of effect handlers. By using capability
passing, iterated CPS, and monomorphizing effect-polymorphic function, we have explored the
static end of this spectrum in detail and offer two data points in the design space of effect handlers.
Other tradeoffs are possible. More experimentation with different designs and implementations of
languages with effect handlers will help to inform these.

A TARGET LANGUAGE OF λCap (SIMPLY-TYPED LAMBDA CALCULUS ś STLC)

For easier reference, Figure 8 repeats the standard syntax and typing rules of a call-by-value
simply-typed lambda calculus [Barendregt 1992] extended with letrec.

Syntax of Terms:

Expressions e ::= True | x | e @ e | λx ⇒ e |

letrec f = e in e

Syntax of Types:

Types τ ::= τ→ τ | Int | Bool | . . .

Type Env. Γ ::= ∅ | Γ, x : τ

Type Rules:

Γ(x) = τ

Γ ⊢ x : τ
[T-Var]

Γ, x : τ1 ⊢ e : τ2

Γ ⊢ λx ⇒ e : τ1→ τ2

[T-Lam]
Γ ⊢ e1 : τ1→ τ2 Γ ⊢ e2 : τ1

Γ ⊢ e1 @ e2 : τ2
[T-App]

Γ, f : τ ⊢ e : τ

Γ ⊢ letrec f = e in e : τ
[T-Rec]

Fig. 8. The target language of translating λCap ś Call-by-value simply-typed lambda calculus with letrec.

B TARGET LANGUAGE OF λλCap (TWO-LEVEL LAMBDA CALCULUS)

Figure 9 repeats the standard syntax and typing rules of a 2-level lambda calculus [Danvy et al.
1996; Hillerström et al. 2017; Jones et al. 1993; Nielson and Nielson 1996]. For simplicity, and to be
closer to our implementation, we only include residualized constants and only residualized letrec.
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Syntax of Terms:

Expressions e ::= True | x

| e @ e | λx ⇒ e

| e @ e | λx ⇒ e

| letrec f = e in e

Syntax of Types:

Staged Types σ ::= σ → σ | τ

Residual Types τ ::= τ→ τ | Int | Bool | . . .

Type Env. Γ ::= ∅ | Γ, x : σ

Type Rules:

Γ(x) = σ

Γ ⊢ x : σ
[T-Var]

Γ, x : σ1 ⊢ e : σ2

Γ ⊢ λx ⇒ e : σ1 → σ2
[T-SLam]

Γ ⊢ e1 : σ1 → σ2 Γ ⊢ e2 : σ1

Γ ⊢ e1 @ e2 : τ2
[T-SApp]

Γ, x : τ1 ⊢ e : τ2

Γ ⊢ λx ⇒ e : τ1 → τ2
[T-RLam]

Γ ⊢ e1 : τ1 → τ2 Γ ⊢ e2 : τ1

Γ ⊢ e1 @ e2 : τ2
[T-RApp]

Γ, f : τ ⊢ e : τ

Γ ⊢ letrec f = e in e : τ
[T-RRec]

Fig. 9. The target language of translating λλCap ś 2-level lambda calculus.

C PROOFS

C.1 Typability of Translated Terms (λCap)

Our translation preserves typability (Theorem 5.1). To proof this theorem, we have to assume
hygiene of our translation. That is, variables in T J Θ K and T J Γ K do not shadow each other, and
fresh variables in Γ, introduced by the translation (that is, not present in the source term) do not
shadow variables in T J Γ K. Furthermore, we assume that for every F, there exists a corresponding
global signature Σ(F) = τ1→ τ2.

Proof. The proof proceeds by induction on the typing derivation. The cases for the typing
judgement ⊢exp are all straightforward. The most interesting cased in the typing judgement ⊢cap
are rule Cap-Lift and rule Cap-Handler. We start with rule Cap-Lift, where (following the
translation) we need to make a case distinction between the singleton stack shape (∅,τ ) and the
stack shape with at least two elements (τ ,τ ,τ ′).

case Cap-Lift – stack shape ∅,τ

GivenΘ Γ ⊢cap lift h : [ F ]∅,τ weneed to showT J Θ K, T J Γ K ⊢ HJ lift h K : T J [ F ]∅,τ K.
From the premises, we have Θ Γ ⊢cap h : [ F ]∅ (1). Further, we can compute:
T J [ F ]∅,τ K = T J τ1 K→ CJ τ2 K∅,τ = T J τ1 K→ (T J τ2 K→ T J τ K) → T J τ K
This lets us derive:

T-Var
. . . ⊢ k : TJτ2K→TJτ K

(1) and induction hypothesis

. . . ⊢ HJhK∅ : TJτ1K→CJτ2K∅
T-Var

. . ., x : TJτ1K, . . . ⊢ x : TJτ1K
T-App

. . ., x : TJτ1K, . . . ⊢ HJhK∅ @ x : TJτ2K
T-App

TJΘK, TJΓK, x : TJτ1K, k : TJτ2K→TJτ K ⊢ k @ (HJhK∅ @ x ) : TJτ K
T-Lam

TJΘK, TJΓK, x : TJτ1K ⊢ λk ⇒k @ (HJhK∅ @ x ) : (TJτ2K→TJτ K)→TJτ K
T-Lam

TJΘK, TJΓK ⊢ λx ⇒λk ⇒k @ (HJhK∅ @ x ) : TJ[F]∅,τ K

case Cap-Lift – stack shape τ ,τ ,τ ′

Similar to the other case, given Θ Γ ⊢cap lift h : [ F ]τ ,τ ,τ ′ we need to show
T J Θ K, T J Γ K ⊢ HJ lift h K : T J [ F ]τ ,τ ,τ ′K.
From the premises, we have Θ Γ ⊢cap h : [ F ]τ ,τ (1). Further, we can compute:
T J [ F ]τ ,τ ,τ ′ K = T J τ1 K→ CJ τ2 Kτ ,τ ,τ ′ = T J τ1 K→ (T J τ2 K→ CJ τ ′ Kτ ,τ ) → CJ τ ′ Kτ ,τ
Again, we can derive
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Ind. hyp., weakening, and (1)

. . . ⊢ HJhKτ ,τ : TJτ1K→CJτ2Kτ ,τ
T-Var

. . . ⊢ x : TJτ1K
T-App

. . . ⊢ HJhKτ ,τ @ x : (TJτ2K→CJτ Kτ )→CJτ Kτ

(2)

. . . ⊢ λy ⇒k @ y @ k′ : TJτ2K→CJτ Kτ
T-App

. . ., x : TJτ1K, k : TJτ2K→CJτ ′Kτ ,τ , k
′ : TJτ ′K→CJτ Kτ ⊢ . . . : CJτ Kτ

T-Lam
. . ., x : TJτ1K, k : TJτ2K→CJτ ′Kτ ,τ ⊢ λk′ ⇒. . . : (TJτ ′K→CJτ Kτ )→CJτ Kτ

T-Lam
. . ., x : TJτ1K ⊢ λk ⇒λk′ ⇒. . . : (TJτ2K→CJτ ′Kτ ,τ )→CJτ ′Kτ ,τ

T-Lam
TJΘK, TJΓK ⊢ λx ⇒λk ⇒λk′ ⇒HJhKτ ,τ @ x @ (λy ⇒k @ y @ k′) : TJ[F]τ ,τ ,τ ′K

where the typing of the composed continuation (2) is given by:

T-Var
. . . ⊢ k : TJτ2K→CJτ ′K

τ ,τ

T-Var
. . . ⊢ y : TJτ2K

T-App
. . . ⊢ k @ y : (TJτ ′K→CJτ K

τ
)→CJτ K

τ

T-Var
. . . ⊢ k ′ : TJτ ′K→CJτ K

τ
T-App

. . ., y : TJτ2K ⊢ k @ y @ k ′ : CJτ K
τ

T-Lam
. . . ⊢ λy ⇒k @ y @ k ′ : TJτ2K→CJτ K

τ

In the derivation, we implicitly expand and contract applications to the meta function CJ · K.
case Cap-Handler

The premises give us Θ, k : [ Resumei ]τ Γ, x : τ ′ ⊢ s : [ τ ]τ (1), and
Σ(Resumei) = τ

′′→ τ . Using the premises (1), (3), T J [ Resumei ]τ = T J τ ′′K→ CJ τ Kτ ,
and the ind. hyp., we obtain:
T J Θ K, k : T J τ ′′K→ CJ τ Kτ , T J Γ K, x : T J τ ′ K ⊢ SJ s Kτ : CJ τ Kτ (3).
Now, starting from T J Θ K, T J Γ K ⊢ λx ⇒ λk ⇒SJ s Kτ : T J τ ′ K→ CJ τ ′′ Kτ ,τ we apply
T-Lam twice to finally reorder the typing context and apply (3).

Most cases of the typing judgement ⊢exp are straightforward and we omit them here.
Similar to rule Cap-Lift, rules Ret and Val of judgement ⊢stm require us to consider two cases:

an empty stack shape (∅) and a non-empty stack shape (τ ,τ ). Otherwise, they pose no difficulty.
Since handlers delimit the captured continuation, the most interesting case is for rule Handle.

case Handle

From the premises, we obtain Θ, c : [ F ]τ ,τ Γ ⊢stm s : [ τ ]τ ,τ (1)

and Θ Γ ⊢cap HJ h Kτ ,τ : [ F ]τ ,τ (2). Following the syntactic abbreviation, we also assume
a derived rule T-Let.

(2) and ind. hyp.

. . . ⊢ HJhKτ ,τ : TJ[F]τ ,τ K

(1), ind. hyp., and reordering of the context

. . . ⊢ SJsKτ ,τ : (TJτ K→CJτ Kτ )→CJτ Kτ

(3)

. . ., x : TJτ K ⊢ SJreturn xKτ : CJτ Kτ
T-Lam

. . . ⊢ λx ⇒SJreturnxKτ : TJτ K→CJτ Kτ
T-App

JΘK, JΓK, c : TJ[F]τ ,τ K ⊢ SJsKτ ,τ @ (λx ⇒SJreturn xKτ : CJτ Kτ
T-Let

JΘK, JΓK ⊢ let c = HJhKτ ,τ in SJsKτ ,τ @ (λx ⇒SJreturn xKτ )

To prove (3), we proceed as with Ret, performing a case distinction on the stack shape τ , both
times closing in application of T-Var to show . . . x : T J τ K ⊢ EJ x K : T J τ K.

□

C.2 Typability of Translated Terms (λλCap)

The proof for Theorem 5.3 is structurally similar to the one of Theorem 5.1. Differences are: (a) it
uses the typing judgements of 2λ instead of STLC and (b) the translation of lambda abstraction,
application and recursive definitions differs.

Proof. We give the case for lambda abstraction, the other cases are similar.

case Lam
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From the premise, we obtain Θ Γ, x : τ ⊢stm s : [ τ ′ ]τ (1). Like for λCap, we can derive:

Ind. hyp. and (1)

TJΘK, TJΓK, x : TJτ K ⊢ SJsK
τ

: CJτ ′K
τ

Reify
TJΘK, TJΓK, x : TJτ K ⊢ Reifyτ SJsK

τ
: CJτ ′K

τ
T-RLam

TJΘK, TJΓK ⊢ λx ⇒ Reifyτ SJsK
τ

: TJτ K→ CJτ ′K
τ

We apply the typing rules for residualized abstractions T-RLam followed by Lemma 10.1. We
use a lemma that the translation of a dynamic type T J τ K results in a residual type in 2λ.

□

Since the staged translation uses Reify and Reflect, we need to adjust our proof accordingly. In
particular, we require the following lemma:

Lemma C.1 (Reify / Reflect).

T J Θ K, T J Γ K ⊢ e : CJ τ K

T J Θ K, T J Γ K ⊢ Reifyτ e : CJ τ K
[Reify]

T J Θ K, T J Γ K ⊢ e : CJ τ K

T J Θ K, T J Γ K ⊢ Reflectτ e : CJ τ K
[Reflect]
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