
Typing, Representing, and Abstracting Control
Functional Pearl

Philipp Schuster
University of Tübingen

Germany

Jonathan Immanuel Brachthäuser
University of Tübingen

Germany

Abstract
A well known technique to implement programming lan-
guages with delimited control operators shift and reset is
to translate programs into continuation passing style (CPS).
We can iterate the CPS translation to obtain the CPS hierar-
chy and to implement a family of control operators shifti
and reseti . This functional pearl retells the story of a fam-
ily of delimited control operators and their translation to
lambda calculus via the CPS hierarchy. Prior work on the
CPS hierarchy fixes a level of n control operators for the
entire program upfront, but we allow different parts of the
program to live at different levels. It turns out that taking
shift0 rather than shift as the basis for the family of control
operators is essential for this. Our source language is a typed
embedding in the dependently typed language Idris. Our tar-
get language is a HOAS embedding in Idris. The translation
avoids administrative beta- and eta-redexes at all levels of
the CPS hierarchy, by iterating well-known techniques for
the non-iterated CPS translation.

CCS Concepts • Software and its engineering→ Con-
trol structures; • Theory of computation → Type struc-
tures;

Keywords Delimited Control, Control Effects, Continua-
tion Passing Style, CPS Hierarchy, Compilation

ACM Reference Format:
Philipp Schuster and Jonathan Immanuel Brachthäuser. 2018. Typ-
ing, Representing, and Abstracting Control: Functional Pearl. In
Proceedings of the 3rd ACM SIGPLAN International Workshop on
Type-Driven Development (TyDe ’18), September 27, 2018, St. Louis,
MO, USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.
1145/3240719.3241788

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
TyDe ’18, September 27, 2018, St. Louis, MO, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-5825-5/18/09. . . $15.00
https://doi.org/10.1145/3240719.3241788

1 Introduction
Control operators shift and reset are useful to model com-
plex control flow. A well known technique to implement
a programming language with delimited control operators
shift and reset is to translate programs into continuation
passing style (CPS) [Danvy and Filinski 1992]. By iterating
the CPS translation n times we can implement a family of
n control operators shifti and reseti . While the original
introduction of the CPS hierarchy by Danvy and Filinski
[1990] works with an untyped language, in this paper we
present an implementation of the CPS hierarchy as a typed
embedding in a dependently typed language. We index ef-
fectful terms by the list of answer types. Each type in this list
corresponds to one level of the CPS hierarchy. We also use
types to distinguish between two stages: static and dynamic.

By the end of the paper we will be able to write programs
in a typed language using a family of control operators
and generate code in a language that supports first-class
functions. We extend our source language with primitives,
ifThenElse and letrec and show how they interact nicely
with our embedding. To get there, we step-wise reconstruct
well known techniques and translate them to Idris and the
typed setting. The individual steps are simple and guided by
the types.

2 Examples
In this section, we motivate programming with control op-
erators in the CPS hierarchy and give an overview over our
source language as an embedding into the dependently typed
programming language Idris [Brady 2013].

2.1 Example: Non-Deterministic Programming
We start with an example implementation of the non-de-
terministic programming statements fail and flip in terms
of the control operator shift0 in Figure 1, adopted from
Danvy and Filinski [1990]. It might be instructive to com-
pare with the original presentation. Both implementations
capture the current continuation k with shift0 . In the im-
plementation of fail we never resume it and immediately
return the string "no" instead. In the implementation of
flip we resume the continuation with both True and False .
We write our programs in do-notation to sequence effectful
statements: Each line after the ‘do‘ is a statement. We ex-
plicitly resume continuations with resume , which we will

https://doi.org/10.1145/3240719.3241788
https://doi.org/10.1145/3240719.3241788
https://doi.org/10.1145/3240719.3241788

TyDe ’18, September 27, 2018, St. Louis, MO, USA Philipp Schuster and Jonathan Immanuel Brachthäuser

fail : Stm (String :: rs) a
fail = shift0 (λk ⇒ do
pure "no")

flip : Stm (r :: rs) Bool
flip = shift0 (λk ⇒ do

resume k True
resume k False)

emit : a→ Stm (List a :: rs) ()
emit a = shift0 (λk ⇒ do

as← resume k ()
pure (a :: as))

Figure 1. Function fail aborts the computation, flip models non-deterministic choice, and emit yields values to the context.

introduce later. The blue overbar and red underbar are stag-
ing annotations and can safely be ignored for now – we will
explain them later.

The types of both flip and fail show that they are (effect-
ful) statements Stm . Statements are parametrized by a list of
answer types and their immediate result. The list of answer
types intuitively corresponds to the computational context
that needs to be provided to execute the statement. Every
element in the list marks a position of the runtime stack with
the expected type. We will use these positions as targets to
transfer the control-flow to. The immediate result of fail
is a for all a , expressing that fail never returns anything
(it could be Void). To allow aborting the computation with
the string "no" , fail requires the list of answer types to
start with String . In contrast, flip is both polymorphic in its
(top-most) answer type r and the rest of the answer types
rs (for “results”). It captures the continuation using shift0
and resumes it twice, discarding the first result of type r ,
only executing both alternatives for the side effects. The
immediate result of flip is Bool , hence the continuation k
takes a boolean value to resume execution.

Because shift0 is a delimited control operator it will cap-
ture the continuation only up to the closest delimiter reset0 .
In consequence, the following example will return the string
"Answer was: no" and not terminate the execution as a
whole to return with the string "no" .

delimitFail : Stm rs String
delimitFail = do
a← reset0 fail
pure ("Answer was: " ++ a)

Herewe delimit fail with reset0 . Thus, fail will not discard
the entire continuation but only up to the closest delimiter
reset0 . Since reset0 immediately surrounds fail , the cap-
tured continuation happens to be empty. The variable a will
be bound to the string "no" which is the immediate result
of the delimited computation reset0 fail . The type of the
immediate result fits with the top-most answer type of fail
whose list of answer types is String :: rs .

In contrast, the following example will not type check:

perhapsFail : Stm (String :: rs) Int
perhapsFail = do

ifThenElse 18 < 0
fail
(pure 9)

wontTypecheck : Stm rs String
wontTypecheck = do

a← reset0 perhapsFail
pure ("Answer was: " ++ a)

It is not clear (to the compiler) whether the computation
perhapsFail delimited by reset0 will abort with string "no"
or return normally with integer 9 . When we delimit a state-
ment with reset0 the answer type and the immediate result
type have to agree.

As another example, consider the effectful function emit
in Figure 1 that yields a value to the surrounding context.
It takes a value to emit as its argument a . It uses shift0 to
capture the current continuation k and resumes k with the
unit value to get a list of results as . Finally, it prepends its
argument a to the front of the other results as . Since we
expect resuming the continuation to return a list, the effectful
function emit only works when the top-most answer type
is a list. To collect the list of emitted values we define the
function collect :

collect : Stm (List a :: rs) b→ Stm rs (List a)
collect m = reset0 (do
← m

pure [])

The function collect runs a computation that has List a as
its top-most answer type and an arbitrary result type b . It
runs the computation, ignores its result and then returns the
empty list. It also acts as a delimiter for all calls to shift0
in m such as the one in emit . In consequence, emit will
suspend and resume the computation at the surrounding call
to collect , prepending the emitted values to the empty list
after the delimited continuation returns.

2.2 Example: Collecting Triples
We now present a bigger example also adopted from Danvy
and Filinski [1990]. The task is to generate all distinct positive
integers i , j and k less than or equal to given integer n
that sum to a given integer s . Our strategy is to use the non-
deterministic choice statement flip to generate candidate
triples and the abortive statement fail to filter those that do
not have the desired property.

Equipped with the operators flip and fail , in Figure 2, we
implement a recursive function choice that non-determinis-
tically chooses an integer between 1 and a given integer
n . We then use choice to implement a function triple that

Typing, Representing, and Abstracting Control TyDe ’18, September 27, 2018, St. Louis, MO, USA

choice : Int → Stm (String :: rs) Int
choice = letrec (λrecurse⇒ λn⇒ do
ifThenElse (n < 1)

fail
(do

b← flip
ifThenElse b
(recurse (n − 1))
(pure n)))

triple : Int → Int → Stm (String :: rs) (Int, Int, Int)
triple n s = do

i ← choice n
j ← choice (i − 1)
k ← choice (j − 1)
ifThenElse ((i + (j + k)) == s)
(pure (i , j , k))
fail

Figure 2. Effectful functions choice for non-deterministically choosing an integer between 1 and n , and triple filtering
triples that sum up to s .

chooses integers i , j and k and fails if they do not sum up
to the given integer s . To be able to use fail , the types of
choice and triple express that they use control effects with
top-most answer type String , but are polymorphic in the
remaining answer types rs .
To gather all triples produced by triple into a list, we

might want to use emit and collect . However, doing so, we
already notice on the type-level, that the two effects interfere.
We cannot have a top-most answer type of both String
and of List (Int, Int, Int) at the same time. The solution is
to introduce a second level of control and use the emit
operation on that level. We could rewrite emit to use a new
control operator shift01 where it previously used shift0 .
Instead, here we choose to use the function lift that lifts a
computation from one level to the next. We will define it
later.

emitTriples : Stm (String :: List (Int, Int, Int) :: rs) String
emitTriples = do
res← triple 9 15
lift (emit res)
pure "done"

emittedTriples : Stm [] (List (Int, Int, Int))
emittedTriples = collect (reset0 (emitTriples { rs = []}))

In emittedTriples , we explicitly choose the list of answer
types rs to be the empty list [] . As a result, emittedTriples
cannot have any further control effects itself – making it
a pure value. The effects of emitTriples (that is, those of
choice and fail) are delimited by reset0 and the effects of
emit are delimited by collect .
An alternative to collecting all triples is to abort the com-

putation early and only get the first triple. To this end, we
implement an effectful function first that, when called with
an argument a , gets the current continuation, but never
resumes it. Instead it immediately returns Just a .

first : a→ Stm (Maybe a :: rs) ()
first a = shift0 (λk ⇒ do
pure (Just a))

Running triple with first instead of emit follows the same
pattern as before.

firstOfTriples : Stm (String ::Maybe (Int, Int, Int) :: rs) String
firstOfTriples = do

res← triple 9 15
lift (first res)
pure "done"

firstTriple : Stm [] (Maybe (Int, Int, Int))
firstTriple = reset0 (do
reset0 firstOfTriples
pure Nothinд)

The effectful function first requires an answer type of
Maybe a . We can use it on the result of triple by lifting
it, just like we did before with emit . However, we now dis-
card the result of reset0 firstTriples and return Nothing
whenever triple fails to emit a value.

Figure 3 shows the result of pretty printing the program
generated by emittedTriples . All control operators are elim-
inated and evaluating the expression results in a pure list
of triples. Internally, it is specialized to use two levels of
CPS internally. The CPS transformation only introduced
beta-redexes in between recursive definitions. The resulting
program is free of administrative beta- and eta-redexes.
We have shown how to use our embedded language to

compose programs with control operators. Since our em-
bedding is typed, we were able to prevent some errors and
for instance reject the function wontTypecheck . We have
shown and discussed the code in CPS that we generate. In
the next section we will start building up to this goal with
an easy first step.

3 Basics: Continuation Passing Style
Our goal is to embed a language with control operators into
the dependently typed language Idris. In this section, we
start with the translation of control operators shift0 and
reset0 into CPS and show how to enable do-notation for
terms in CPS.

TyDe ’18, September 27, 2018, St. Louis, MO, USA Philipp Schuster and Jonathan Immanuel Brachthäuser

(let choice1 n = (λk1⇒ (λk2 ⇒
(if (n < 1)

then k2 "no"

else choice1 (n − 1) k1 (λx4 ⇒ k1 n k2)))) in choice1) 9 (λx0 ⇒ (λk3⇒
(let choice2 n = (λk1⇒ (λk2 ⇒
(if (n < 1)

then k2 "no"

else choice2 (n − 1) k1 (λx6 ⇒ k1 n k2)))) in choice2) (x0 − 1) (λx1 ⇒ (λk4⇒
(let choice3 n = (λk1⇒ (λk2 ⇒
(if (n < 1)

then k2 "no"

else choice3 (n − 1) k1 (λx8 ⇒ k1 n k2)))) in choice3) (x1 − 1) (λx2 ⇒ (λk5 ⇒
(if ((x0 + (x1 + x2)) ≡ 15)

then ((x0, x1, x2) :: (k5 "done"))

else k5 "no"))) k4)) k3)) (λx0 ⇒ [])

Figure 3. Result of pretty printing the expression emittedTriples .

We introduce the following type alias to represent terms
in CPS with type a and answer type r .

Cps : Type→ Type→ Type
Cps r a = (a→ r) → r

We can also view a term of type Cps r a as potentially hav-
ing control effects up to a delimiter that expects type r . In
this section, a context from type a to type r is a function
(a→ r) . We will use the terms context and continuation
interchangeably.
Following Materzok and Biernacki [2011], we define the

control operator shift0 . Given a body, it returns a term in
CPS. The body takes the captured continuation from imme-
diate result type a to answer type r and returns r .

shift0 : ((a→ r) → r) → Cps r a
shift0 = id

We implement shift0 as the identity function - it is just
a shift in perspective so to say. It is important to note that
shift0 removes the corresponding reset0 delimiter and that
both the continuation and the body of shift0 have to be pure.
Neither of them can have any control effects as those would
be undelimited. This is also reflected in the type of the body
and the continuation: both return a pure value of type r .
The control operator shift0 also has an inverse that we

will call run0 . It is similar to the $ -operator from Kiselyov
and Shan [2007] but with its arguments swapped. Given a
term in CPS and a context, it runs the term in the context,
delimiting any control effects the term might have.

run0 : Cps r a→ (a→ r) → r
run0 = id

The result of run0 is a pure value of type r , it does not
have any control effects. We will later see how shift0 and
run0 make it very natural to walk up and down the CPS

hierarchy. To recover the classical delimiter reset0 we run
the computation in the empty context, which is the identity
function.

reset0 : Cps r r → r
reset0 m = run0 m id

The immediate result type and the answer type r need to
agree. Again, the type makes it clear that reset0 delimits all
control effects. The result is a pure value.
To translate pure values into CPS we define the function

pure and to compose terms in CPS we define the function
bind . The reader might recognize the continuation monad.
And indeed, these are the two combinators that allow us to
use do-notation for our embedded language.

pure : a→ Cps r a
pure a = λk ⇒ k a

push : (a→ Cps r b) → (b→ r) → (a→ r)
push f k = λa⇒ f a k

bind : Cps r a→ (a→ Cps r b) → Cps r b
bind m f = λk ⇒ m (push f k)

The function pure calls the current continuation with the
given value. We define an auxiliary function push to push
an effectful function (a→ Cps r b) onto a context (b→ r)
to get a new context (a→ r) . We call it “push” to emphasize
the analogy between computational contexts and the runtime
stack. In bind we run the given term in CPS with the given
effectful function pushed onto the current continuation.

Let us summarize what we have so far in a small example:

example : Int
example = 1 + reset0 (do
x ← shift0 (λk ⇒ k (k 100))
pure (10 + x))

Typing, Representing, and Abstracting Control TyDe ’18, September 27, 2018, St. Louis, MO, USA

The example evaluates to 121 . With reset0 we delimit the
effectful term to get a value of type Int and add the value
1 . In the argument of reset0 we use our control operator
shift0 to capture the current continuation as k and apply
it twice to the value 100 . Like all the continuations that we
capture with shift0 , k is pure. We bind the result of shift0
to x and return this result after adding 10 . Again, the type
of example tells us that it is pure i.e. does not have any
control effects observable from the outside. All side effects
have been encapsulated.

4 Representing Control – Staging CPS
Expressions

In the previous section, we embedded the control operators
shift0 and run0 into our meta language Idris. Nowwe want
to reify terms in the embedded language into our target lan-
guage: a typed embedding of lambda calculus. In section 7,
we will then extend the target language with primitive oper-
ations, letrec and ifThenElse . The data type · represents
an expression in lambda calculus in HOAS [Pfenning and El-
liot 1988] which simplifies the implementation considerably.
This was observed before in a similar setting by Thiemann
[1996].

data · : Type→ Type where
λ : (a→ b) → a→ b
@ : a→ b→ a→ b

Wewrite type applications of data type · with a red underbar,
as in a , to represent a target language expression of type
a . Additionally, we write the one-argument constructor
λ prefix and the two-argument constructor @ infix. For
example, a term in the target language with function type has
type a→ b , but a function in the meta language between
expressions in the target language has type a→ b .

We followDanvy and Filinski [1992] and add staging anno-
tations to the type of terms in CPS, that we have introduced
in section 3:

Cps : Type→ Type→ Type
Cps r a = (a→ r) → r

We have two stages: present and future. We also call the
present stage static and the future stage dynamic and use
types to distinguish terms in different stages. Present-stage
values of type a have type a and future stages values of
type a have type a .

Notational Conventions The naming convention of writ-
ing a type in blue and with an overbar (like Cps) indicates
that we statically know the control flow of a term. In contrast,
a red type with an underbar is the type of an expression in
the target language, which means that the term will only be
known dynamically. A black type is a type in the meta lan-
guage Idris. Similarly, on the term level, we have a naming

convention where we use red with an underbar for construc-
tors of target language expressions and black for terms in
the meta language Idris.

We are ready to define staged variants of shift0 , run0 and
reset0 . The definitions are exactly like in section 3, however,
using staging annotations we can give them more specific
types. The types express the fact that we are composing
(dynamic) target language expressions.

shift0 : ((a→ r) → r) → Cps r a
shift0 = id

run0 : Cps r a→ (a→ r) → r
run0 = id

reset0 : Cps a a→ a
reset0 m = run0 m id

To compose programs in CPS, we define staged variants of
pure and bind with auxiliary function push just like in
section 3. Again, on the term level they are exactly the same,
but we give them more specific types.

pure : a→ Cps r a
pure a = λk ⇒ k a

push : (a→ Cps r b) → (b→ r) → (a→ r)
push f k = λa⇒ f a k

bind : Cps r a→ (a→ Cps r b) → Cps r b
bind m f = λk ⇒ m (push f k)

Expressions that are built using the above functions are
meta level functions over terms of the target language. Even-
tually, we want to completely reify such expressions to one
expression in the target language. To this end, we define the
two symmetric functions reify and reflect :

reify : Cps r a→ Cps r a
reify m = λ λk ⇒ m (λa⇒ k @ a)

reflect : Cps r a→ Cps r a
reflect m = λk ⇒ m @ (λ λa⇒ k a)

We naturally avoid any administrative beta redexes that
would have to be post-reduced as explained by Danvy and
Filinski [1992]. To translate a term in a dynamic context k ,
the function reify takes a term where the control flow is
known statically but values are only known dynamically and
produces a term in the target language. The function reflect
takes a term in the target language and makes it possible to
use it in the source language.

Given the previous definitions, we can now embed applica-
tion and abstraction. Application takes a term in CPS whose
result is an effectful function and a term in CPS whose result
is a value of type a and applies the function to the value.
This makes it necessary to first evaluate both the function
and the value and finally reflect the result of the application.
To embed lambda abstractions we take a function (again

TyDe ’18, September 27, 2018, St. Louis, MO, USA Philipp Schuster and Jonathan Immanuel Brachthäuser

in HOAS) and return an abstraction in the target language
where we reify the body of the function applied to the argu-
ment.

app : Cps r (a→ Cps r b) → Cps r a→ Cps r b
app mf ma = do
f ← mf
a← ma
reflect (f @ a)

lam : (a→ Cps r b) → Cps r (a→ Cps r b)
lam f = pure (λ λa⇒ reify (f a))

These definitions coincide with the ones by Danvy and Fil-
inski [1992]. All we did was to inline the translation meta-
function and factor parts into reusable combinators.
Let’s consider the example term from section 3, but with

the types presented in this section.

example : Int
example = 1 + reset0 (do
x ← shift0 (λk ⇒ k (k 100))
pure 10 + x)

When we pretty print the expression example we get the
following:

(1 + (10 + (10 + 100)))

Tomake this examplemore interesting, let’s abstract the term
with the call to shift0 into its own function resumeTwice .

resumeTwice : Cps Int (Int → Cps Int Int)
resumeTwice = lam (λn⇒ shift0 (λk ⇒ k (k n)))

example′ : Int
example′ = 1 + reset0 (do

x ← app resumeTwice (pure 100)
pure (10 + x))

Pretty printing this term now yields:

(1 + (λn⇒ (λk ⇒ (k (k n)))) 100 (λx ⇒ (10 + x)))

With lam we reify an effectful function into the target lan-
guage. To apply it in the source language, we have to reflect
it. This introduces beta-redexes.
In this section we refined the definitions of section 3 by

giving more specific types and thereby adding staging anno-
tations. We reify terms written in CPS in the source language
into terms in CPS in the target language. The generated
lambda expressions are free of administrative beta-redexes
unless we specifically ask for a term to be reified and reflect
it later. In the next section, we will again refine the basic
definitions of section 3, but this time in a different way.

5 Abstracting Control – The CPS
Hierarchy

In this section, we will explore a second variation of the
basic definitions of section 3. Instead of adding staging an-
notations, this time we follow Danvy and Filinski [1990] and
iterate the CPS translation to obtain a hierarchy of control
operators. Later in section 6, we will combine the extensions
of this and the previous section. The present section only
uses terms in the meta language and therefore you will not
see any colors.

The CPS hierarchy [Biernacka et al. 2011; Danvy and Fil-
inski 1990; Kameyama 2004; Materzok and Biernacki 2012]
allows us to use different control effects in the same pro-
gram. We can obtain the CPS hierarchy by iterating the CPS
transformation. Since the CPS transformation transforms
both types and terms, we will have to iterate it on both
types and terms. As a consequence, we will have multiple
answer types, one for each iteration of the CPS transforma-
tion. Concretely this means that the answer type of the first
CPS transformation is again a term in CPS, whose answer
type is then again in CPS and so on. For example using our
definition of Cps from section 3, the type of a term of type
a in CPS whose answer types are p , q and r would have
type Cps (Cps (Cps r q) p) a . As a shorthand, Figure 4c de-
fines the type of statements Stm rs a with a list of answer
types rs and an immediate result of type a . Here we can see
the power of using dependent types. We index statements
by a list and thus statically track all intermediate answer
types on the type level. We type members of the CPS hier-
archy of level n at type Stm rs a for a list of answer types
with length n . A statement with an empty list of answer
types cannot have any control effects and is a pure value.
Because different parts of a program can have different lists
of answer types this will allow us to avoid CPS transforming
sub-programs when it is unnecessary.

Again, Figure 4d implements shift0 , run0 and push ex-
actly like in section 3. We just give them more specific types,
replacing r by Stm rs r . However, for pure and bind (Fig-
ure 4a) we now have two cases to consider: one where we
have an empty list of answer types and one where we have a
non-empty list of answer types. For an empty list of answer
types i.e. pure expressions, in pure we directly return the
given value and in bind we apply the second argument to
the first. For a non-empty list of answer types the implemen-
tation is exactly the one in section 3. Furthermore, reset0
does not use the identity function as empty context, but in-
stead resets with pure which corresponds to θ by Danvy
and Filinski [1990].

The definitions given so far only work with the top-most
answer type, but we want a hierarchy of control operators.
While the CPS hierarchy is usually used to implement a
family of control operators based on shift and reset , in this
paper we use it to construct a family of control operators

Typing, Representing, and Abstracting Control TyDe ’18, September 27, 2018, St. Louis, MO, USA

pure : a→ Stm rs a
pure[] a = a
purer ::rs a = λk ⇒ k a

push : (a→ Stm (r :: rs) b) → (b→ Stm rs r) → (a→ Stm rs r)
push f k = λa⇒ f a k

bind : Stm rs a→ (a→ Stm rs b) → Stm rs b
bind[] m f = f m
bindr ::rs m f = λk ⇒ m (push f k)

(a) Iterated variant of monadic operations.

lift : Stm rs a→ Stm (r :: rs) a
lift = bind

(b) Lift operation to move between layers of the hierarchy.

Stm : List Type→ Type→ Type
Stm [] a = a
Stm (r :: rs) a = Cps (Stm rs r) a

(c) Type of effectful statements, indexed by intermediate answer types.

shift0 : ((a→ Stm rs r) → Stm rs r) → Stm (r :: rs) a
shift0 = id

run0 : Stm (r :: rs) a→ (a→ Stm rs r) → Stm rs r
run0 = id

reset0 : Stm (a :: rs) a→ Stm rs a
reset0 m = run0 m pure

(d) Iterated variant of control operations

Figure 4. Iterated variant of a language with control operators.

shift00 , shift01 , shift02 , etc. based on shift0 and reset0 .
Rather than defining them directly we will first define a
useful function lift (Figure 4b) that lifts any statement with
answer types rs into a larger context with one more answer
type r :: rs . Its implementation is just bind and the reader
might be surprised that the types just happen to match.

We obtain a family of shifts by iterating the lifting:

shift00 : ((a→ Stm rs r) → Stm rs r) → Stm (r :: rs) a
shift00 = shift0

shift01 : ((a→ Stm rs r) → Stm rs r) → Stm (q :: r :: rs) a
shift01 = lift ◦ shift0

shift02 : ((a→ Stm rs r) → Stm rs r) → Stm (p ::q :: r :: rs) a
shift02 = lift ◦ lift ◦ shift0

The body of each shift0i has the same type, since the control
operator shift0i removes i + 1 delimiters. It thus can only
make use of control effects outside of the i + 1 th delimiter.
This also becomes visible in the result type: the answer type
r has to match the answer type at the corresponding level of
the outer computation. For example in shift01 , the answer
type r occurs in the second position in the list of answer
types q :: r :: rs .

Similarly, we can iterate reset0 to obtain a family of resets
that delimits multiple levels of control effects at once.

reset01 : Stm (a :: a :: rs) a→ Stm rs a
reset01 = reset0 ◦ reset0

All answer types have to agree.
Equipped with lift and reset0 we can recover the classi-

cal shift .

shift : ((a→ Stm (r ::rs) r) → Stm (r ::rs) r) → Stm (r ::rs) a
shift body = shift0 (λk ⇒ reset0 (body (lift ◦ k)))

The difference shows in the type signature for shift where
the body and continuation live at the same level of the hi-
erarchy as the rest. To implement shift , we capture the

continuation with shift0 , but delimit the body with reset0 .
Since the body now can have the same control effects, we
also lift the continuation before passing it to the body.
An example of using multiple levels of control effects is

the partition function.Given an integer a , it partitions a
list of integers into two lists: one containing all integers less
than a and on containing all integers greater or equal to a .
We use emit on two levels of the hierarchy to emit values
to the respective partition.

partition : Int → List Int → Stm [List Int, List Int] ()
partition a l = case l of
[] ⇒ do
pure ()
(h :: t) ⇒ if (a < h)
then (do
emit h
partition a t)

else (do
lift (emit h)
partition a t)

Having seen how to walk down the hierarchy with reset0
and walk it up with lift , in the next section we will combine
section 4 and section 5 in order to reify terms in the CPS
hierarchy.

6 Representing and Abstracting Control
Combining the two variations of the previous two sections,
we add staging annotations to the CPS hierarchy. We use the
same definition of expressions as before. Our type of state-
ments with staging annotations now marks the immediate
result as well as all intermediate answer types as dynamic by
wrapping them in · (Figure 5c). When compared to section 5,
for the monadic operations (Figure 5a), control operators
(Figure 5d) and lift (Figure 5b) we only change the types to

TyDe ’18, September 27, 2018, St. Louis, MO, USA Philipp Schuster and Jonathan Immanuel Brachthäuser

pure : a→ Stm rs a
pure[] a = a
purer ::rs a = λk ⇒ k a

push : (a→ Stm (r :: rs) b) → (b→ Stm rs r) → (a→ Stm rs r)
push f k = λa⇒ f a k

bind : Stm rs a→ (a→ Stm rs b) → Stm rs b
bind[] m f = f m
bindr ::rs m f = λk ⇒ m (push f k)

(a) Iterated and staged variant of monadic operations.

lift : Stm rs a→ Stm (r :: rs) a
lift = bind

(b) Lift operation to move between layers of the hierarchy.

Stm : List Type→ Type→ Type
Stm [] a = a
Stm (r :: rs) a = (a→ Stm rs r) → Stm rs r

(c) Type of effectful statements, indexed by intermediate answer types.

shift0 : ((a→ Stm rs r) → Stm rs r) → Stm (r :: rs) a
shift0 = id

run0 : Stm (r :: rs) a→ (a→ Stm rs r) → Stm rs r
run0 = id

reset0 : Stm (a :: rs) a→ Stm rs a
reset0 m = run0 m pure

(d) Iterated and staged variant of control operations

Figure 5. Iterated and staged variant of a language with control operators.

be more specific – the implementation is exactly the same.
All abstractions and applications that we introduce are on
the meta level which means in using these functions we do
not generate any beta redexes in the target language. The
control flow in the CPS hierarchy is completely static.
Just like in section 4, we want to reify terms. The only

difference is, that the source level terms live in the CPS
hierarchy at an arbitrary level.

mutual
reify : Stm rs a→ Stm rs a
reify[] m = m
reifyq::qs m = λ λk ⇒ reify (m (λa⇒ reflect (k @ a)))

reflect : Stm rs a→ Stm rs a
reflect[] m = m
reflectq::qs m = λk ⇒ reflect (m @ (λ λa⇒ reify (k a)))

The functions reify and reflect are mutually recursive. To
reify a pure statement we don’t need to do anything. It al-
ready is an expression in the target language. If we reify
a statement with at least one answer type, we build an ab-
straction for the continuation and recursively reify the body
after passing the reflected continuation to it. The body is
one level lower in the hierarchy. Symmetrically, to reflect a
pure expression into a statement without any answer types
we don’t have to do anything. If the expression has at least
one answer type, we abstract the continuation and reflect
the body after passing the reified continuation to it.

For example, let’s define a function that emits a value on
two levels of control.

emitTwice : Int → Stm (List Int :: List Int :: rs) ()
emitTwice a = do

emit a
lift (emit a)

We have made emitTwice polymorphic in the rest of the list
of answer types rs . In choosing rs before reification we
choose the level of the CPS hierarchy the reified term is in.
For example, when we choose rs to be the empty list [] ,
reify and pretty print the function emitTwice we get:

(λa⇒ (λk1⇒ (λk2 ⇒
(a :: (k1 () (λas⇒ (k2 (a :: as))))))))

If we choose rs to be the singleton list containing type unit
[()] , we obtain one more level of CPS:

(λa⇒ (λk1⇒ (λk2 ⇒ (λk3⇒
(k1 () (λas⇒ (λk4⇒
(k2 (a :: as) (λx1⇒ k4 x1)))) (λas⇒
(k3 (a :: as))))))))

With the abstraction (λx1⇒ k4 x1) , we have introduced
an eta-redex that when reduced exposes another eta-redex.
While we could post-reduce those eta-redexes, it is advisable
to not generate them in the first place.
We have shown how to combine the treatments of sec-

tion 4 and section 5 to take terms in our source language
that use control operators at different levels and generate
terms in our target language in the CPS hierarchy. These
generated terms might contain many eta-redexes. This is
particularly severe, since the size of fully expanded types
in the CPS hierarchy is exponential in the number of levels.
In the next section we will show how to avoid these extra
eta-redexes.

7 Preventing Eta-Redexes
In the previous section, we generated code for terms in the
CPS hierarchy. But the code generated for statements with
multiple answer types contains eta-redexes as observed by
Danvy and Filinski [1992]. Danvy and Filinski also propose
a solution to this problem: they distinguish whether the con-
text is dynamic or static, avoiding unnecessary reflection

Typing, Representing, and Abstracting Control TyDe ’18, September 27, 2018, St. Louis, MO, USA

and later reification of an already dynamic context. We can
easily translate their solution to the iterated setting by dis-
tinguishing for every context in the CPS hierarchy whether
it is static or dynamic. This will be our final version of the
language.
In Figure 6c, we introduce a type of contexts Ctx rs a b

that corresponds to an effectful function a→ Stm rs b from
a to b with answer types rs . The two variants of type Ctx
let us statically distinguish between static and dynamic con-
texts. A static context is an effectful function, like in section
6. A dynamic context is an expression in the target language
of type a→ Stm rs b where Stm is from section 5. A state-
ment now takes a context instead of an effectful function as
its continuation. This makes our type of statements and our
type of contexts mutually recursive.

With the distinction between static and dynamic context,
reify and reflect are more complicated and use an auxiliary
function reifyContext . Their definition is translated from
[Danvy and Filinski 1992], but where they have twomutually
recursive functions that do the translation, we have two
cases in reifyContext : one for static and one for dynamic
continuations.

mutual
reify : Stm rs a→ Stm rs a
reify[] m = m
reifyq::qs m = λ λk ⇒ reify (m (Dynamic k))

reflect : Stm rs a→ Stm rs a
reflect[] m = m
reflectq::qs m = λk ⇒ reflect (m @ (reifyContext k))

reifyContext : Ctx rs a r → a→ Stm rs r
reifyContext (Static k) = λ λa⇒ reify (k a)
reifyContext (Dynamic k) = k

While in section 6, in reify we reflected the context be-
fore passing it to the statement m , we now wrap it in the
Dynamic constructor. In reflect , where we previously gen-
erated a lambda term to reify the context, we now call the
function reifyContext instead. This will avoid generating a
lambda abstraction when the context is dynamic.
In previous sections, continuations were functions and

therefore we could apply them to a value to run them. Now
we need a function resume to run a continuation with a
given value.

resume : Ctx rs a r → (a→ Stm rs r)
resume (Static k) = k
resume (Dynamic k) = λa⇒ reflect (k @ a)

Symmetrical to reifyContext , in resume we reflect the con-
text when it is dynamic but do nothing if it is static.
Once again, the definitions for shift0 and run0 do not

change (Figure 6d). Their types express that they now operate
on a contexts. In pure , push and bind (Figure 6a) we now

have to resume the continuation with resume instead of
directly calling it. In reset0 , we reset the computation into a
context that is statically known to be pure . Similarly, push
creates a static context.
With this definition of bind we can’t use do-notation

anymore. So we define (>>=) to call bind with its second
argument wrapped in the Static constructor.

(>>=) : Stm rs a→ (a→ Stm rs b) → Stm rs b
m >>= f = bind m (Static f)

Monadic composition in do-notation uses static contexts and
still does not produce beta-redexes. In reify and reflect we
take advantage of our ability to also pass dynamic contexts
to statements to avoid eta-redexes.

7.1 Primitives, Branching and Recursion
Using this final version of our language, we now show how
to add primitives, ifThenElse and letrec . In section 4, we
defined lam and app in the same way as Danvy and Filinski
[1992]. However, it turns out that those definitions don’t fit
nicely with the rest of the language. We rather propose the
following more symmetrical definitions.

app : a→ Stm rs b→ (a→ Stm rs b)
app f = λa⇒ reflect (f @ a)

lam : (a→ Stm rs b) → a→ Stm rs b
lam f = λ λa⇒ reify (f a)

Here, the definition of app does not take statements that
evaluate to the function and the argument, respectively. In-
stead, it assumes they are already values and simply reflects
the application. Likewise, the definition of lam does not
return a statement that then evaluates to the created lambda
abstraction. Instead, the result of lam is immediately the
reified lambda abstration.
In similar spirit, we do not CPS transform pure primi-

tives like · + · . While such a translation is possible as the
following shows, we rather ask the user to explicitly use
do-notation and bind.

add : Stm rs Int → Stm rs Int → Stm rs Int
add mx my = do

x ← mx
y ← my
pure (x + y)

This helps us to exploit the type-level distinction between
pure expressions and effectful statements.

Assuming the target language has a primitive Ite of type
Bool → a→ a→ a , we define ifThenElse for statements
with an arbitrary list of answer types.

ifThenElse : Bool → Stm rs a→ Stm rs a→ Stm rs a
ifThenElse[] b t e = Ite b t e
ifThenElseq::qs b t e = λk ⇒ ifThenElse b (t k) (e k)

TyDe ’18, September 27, 2018, St. Louis, MO, USA Philipp Schuster and Jonathan Immanuel Brachthäuser

pure : a→ Stm rs a
pure[] a = a
purer ::rs a = λk ⇒ resume k a

push : Ctx (r :: rs) a b→ Ctx rs b r → Ctx rs a r
push f k = Static (λa⇒ resume f a k)

bind : Stm rs a→ Ctx rs a b→ Stm rs b
bind[] m f = resume f m
bindr ::rs m f = λk ⇒ m (push f k)

(a) Iterated and staged variant of monadic operations.

lift : Stm rs a→ Stm (r :: rs) a
lift = bind

(b) Lift operation to move between layers of the hierarchy.

mutual
Stm : List Type→ Type→ Type
Stm [] a = a
Stm (r :: rs) a = Ctx rs a r → Stm rs r

data Ctx : List Type→ Type→ Type→ Type where
Static : (a→ Stm rs b) → Ctx rs a b
Dynamic : a→ Stm rs b → Ctx rs a b

(c) Mutually recursive types of statements and contexts.

shift0 : (Ctx rs a r → Stm rs r) → Stm (r :: rs) a
shift0 = id

run0 : Stm (r :: rs) a→ Ctx rs a r → Stm rs r
run0 = id

reset0 : Stm (a :: rs) a→ Stm rs a
reset0 m = run0 m (Static pure)

(d) Iterated and staged variant of control operations with opt. eta-redexes.

Figure 6. Iterated and staged variant of a language with control operators avoiding eta-redexes.

In the case where the list of answer types, we are already
operating on values and can directly use the target language’s
Ite . In the other case, we abstract over the current context
and recurse, passing the context to both the then-branch and
the else-branch. This duplicates the static context and might
result in a blow up of the size of generated code. To avoid this
duplication we can reify the context, give it a name and pass
the reflected name to the two branches. Also, to generate
the code in Figure 3 we performed a bit of partial evaluation
(not shown here) to avoid generating a call to ifThenElse ,
when the dynamic condition happens to be statically known
to be True or False .

To implement letrec , we assume the target language has
a Rec primitive of type (a→ b→ a→ b) → a→ b .

letrec : ((a→ Stm rs b) → a→ Stm rs b) → a→ Stm rs b
letrec body = λa⇒ reflect (Rec (λf ⇒ λx ⇒
reify (body (λy ⇒ reflect (f @ y)) x)) @ a)

Granted, the implementation of letrec is rather complicated,
but luckily we have the types to guide us with the inser-
tion of staging annotations. The outermost call to reflect
allows us to use letrec with statically known control flow.
We necessarily need to reify the body in order to pass it to
Rec . Finally, the innermost reflect call reflects the recursive
application to be used by body .
To summarize, in this section we have introduced a new

type of contexts that allows us to statically distinguish be-
tween static and dynamic contexts. This helps us to avoid
eta-redexes in the generated code. We have shown how to
add primitives, ifThenElse and letrec to the source lan-
guage, given that the target language has corresponding
features.

8 Related Work
The amount of work on delimited continuations and on two-
stage lambda calculus is vast, therefore we only compare the
most closely related publications.
We base our basic control operator shift0 and its CPS

translation on prior work by Materzok and Biernacki [2011]
who introduce a type system with subtyping, type infer-
ence and implicit coercions. In contrast, we require users to
explicitly use lift . Additionally, they support answer type
modification while we do not. Indexing effectful terms by a
list of answer types is not sufficient to support answer type
modification. Moving from the list index to a tree structure
similar to the annotations by Materzok and Biernacki might
remedy this problem.

We implement the CPS hierarchy first presented by Danvy
and Filinski [1990]. However, our family of control opera-
tors is based on shift0 instead of shift . Danvy and Filinski
translate the entire program at a fixed level n of the CPS
hierarchy, while we allow for different subterms of a pro-
gram to live on different levels. While they give types to ease
understanding, their source language and meta language
are untyped. We have types in the source language, use a
typed meta language, and show how the two type systems
cooperate.
This paper is explicitly based on the classical work by

Danvy and Filinski [1992]. The authors explain how to avoid
administrative beta- and eta-redexes during a CPS transfor-
mation, by writing the translation itself in CPS. They also
show the importance of distinguishing static and dynamic
application and abstraction. In this paper, we embrace many
important insights from their work and extend them to iter-
ated CPS.

Typing, Representing, and Abstracting Control TyDe ’18, September 27, 2018, St. Louis, MO, USA

9 Limitations and Future Work
We discuss some limitations of our work and how some of
them could be addressed in the future.

Our language does not allow for answer type modification,
whichmeans that our types rule out for example the prefixes
function from [Biernacka et al. 2011]. It is possible to rewrite
some examples of answer type modification, including this
one, to use multiple answer types instead. But we strongly
suspect that this is not always possible while statically ruling
out runtime errors.

In comparison to type systems that allow for answer type
modification and multiple levels of control, for example by
Materzok and Biernacki [2012], we have a less complicated
type system. In our implementation, answer types form a list
instead of a tree. To allow for answer type modification, we
would add another type variable to our type of terms in CPS
from section 3 and obtain the indexed continuation monad
Cps r o a = (a→ o) → r . It is possible that the iterating
and staging development from this paper would then still
work, but we leave this to future work.

We restrict ourselves to the static (in the control operator
sense) control operator shift0 . Our types make sure that
we never capture a continuation when there is no delimiter.
Naturally this rules out some programs that we could express
in a language or library with dynamic delimited control
[Dyvbig et al. 2007].

We use polymorphism in the host language Idris to make
our statements polymorphic in the tail of the list of answer
types rs . It would be desirable to reify this polymorphism
into the target language. One approach could be to reify the
functions that do the lifting.
The size of the types of our statements, when fully ex-

panded, is exponential in the number of levels. If we want to
target a typed language we might have to share types with
some kind of type-level let-insertion.

We could try to reify some levels but not others to imple-
ment a language with control effects, and also use control
effects on the meta level. We imagine that our type of state-
ments would have two lists, one for the static part and one
for the dynamic part and we could move individual levels
from static to dynamic or back.

10 Conclusion
We have reimplemented and combined shift0 [Materzok
and Biernacki 2011], abstracting control [Danvy and Fil-
inski 1990], and representing control [Danvy and Filinski
1992] in a typed language combining different techniques
and tradeoffs to ease the implementation. We hope to inspire
the design and implementation of libraries and languages
with control effects.

References
Malgorzata Biernacka, Dariusz Biernacki, and Sergueï Lenglet. 2011. Typing

Control Operators in the CPS Hierarchy. In Proceedings of the Conference
on Principles and Practice of Declarative Programming. ACM, New York,
NY, USA, 12.

Edwin Brady. 2013. Idris, a general-purpose dependently typed program-
ming language: Design and implementation. Journal of Functional Pro-
gramming 23, 5 (2013), 552–593.

Olivier Danvy and Andrzej Filinski. 1990. Abstracting Control. In Proceed-
ings of the 1990 ACM Conference on LISP and Functional Programming
(LFP ’90). ACM, New York, NY, USA.

Oliver Danvy and Andrzex Filinski. 1992. Representing control: A study of
the CPS transformation. Mathematical Structures in Computer Science 2,
4 (1992), 361–391.

R Kent Dyvbig, Simon Peyton Jones, and Amr Sabry. 2007. A monadic frame-
work for delimited continuations. Journal of Functional Programming 17,
6 (2007), 687–730.

Yukiyoshi Kameyama. 2004. Axioms for delimited continuations in the CPS
hierarchy. In International Workshop on Computer Science Logic. Springer,
442–457.

Oleg Kiselyov and Chung-chieh Shan. 2007. A Substructural Type System
for Delimited Continuations. In Typed Lambda Calculi and Applications,
Simona Ronchi Della Rocca (Ed.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 223–239.

Marek Materzok and Dariusz Biernacki. 2011. Subtyping Delimited Continu-
ations. In Proceedings of the 16th ACM SIGPLAN International Conference
on Functional Programming (ICFP ’11). ACM, New York, NY, USA, 81–93.
https://doi.org/10.1145/2034773.2034786

Marek Materzok and Dariusz Biernacki. 2012. A dynamic interpretation of
the CPS hierarchy. In Proceedings of the Asian Symposium on Program-
ming Languages and Systems. Springer, 296–311.

Frank Pfenning and Conal Elliot. 1988. Higher-Order Abstract Syntax.
In Proceedings of the Conference on Programming Language Design and
Implementation. ACM, 199–208. https://doi.org/10.1145/53990.54010

Peter J. Thiemann. 1996. Cogen in six Lines. In Proceedings of the Interna-
tional Conference on Functional Programming. ACM, 180–189.

https://doi.org/10.1145/2034773.2034786
https://doi.org/10.1145/53990.54010

	Abstract
	1 Introduction
	2 Examples
	2.1 Example: Non-Deterministic Programming
	2.2 Example: Collecting Triples

	3 Basics: Continuation Passing Style
	4 Representing Control – Staging CPS Expressions
	5 Abstracting Control – The CPS Hierarchy
	6 Representing and Abstracting Control
	7 Preventing Eta-Redexes
	7.1 Primitives, Branching and Recursion

	8 Related Work
	9 Limitations and Future Work
	10 Conclusion
	References

