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Monomorphization is a common implementation technique for parametric type-polymorphism, which avoids

the potential runtime overhead of uniform representations at the cost of code duplication. While important as

a folklore implementation technique, there is a lack of general formal treatments in the published literature.

Moreover, it is commonly believed to be incompatible with higher-rank polymorphism. In this paper, we

formally present a simple monomorphization technique based on a type-based flow analysis that generalizes to

programswith higher-rank types, existential types, and arbitrary combinations. Inspired by algebraic subtyping,

we track the flow of type instantiations through the program. Our approach only supports monomorphization

up to polymorphic recursion, which we uniformly detect as cyclic flow. Treating universal and existential

quantification uniformly, we identify a novel form of polymorphic recursion in the presence of existential

types, which we coin polymorphic packing. We study the meta-theory of our approach, showing that our

translation is type-preserving and preserves semantics step-wise.
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1 Introduction
Almost every statically typed programming language features some form of parametric type poly-

morphism. One common strategy for implementing parametric polymorphism ismonomorphization,
used for example in C++, Rust, Go [Griesemer et al. 2020], MLton [Cejtin et al. 2000; Weeks 2006],

and Futhark [Hovgaard et al. 2018]. For each instantiation of a type parameter, monomorphization

creates a specialized copy of the function, which avoids the runtime cost of heap allocation for

boxing and opens up the potential for additional downstream optimizations. While important as a

folklore implementation strategy, formal treatments in the published literature are rare.

Moreover, it is often believed that monomorphization is inherently incompatible with type

system features that go beyond simple ML-style polymorphism, such as higher-rank polymorphism.

Notably, several researchers in the field have made claims to that effect, such as

Higher-rank types cannot be monomorphized at all.
— Eisenberg and Peyton Jones [2017]
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and

Furthermore, monomorphization cannot be done for [. . . ] higher-rank (first-class polymor-
phic) functions.

— Oleg Kiselyov, 2021
1

and

some polymorphism simply cannot be specialized statically (polymorphic recursion, first-
class polymorphism)

— Kennedy and Syme [2001]

manifesting the common belief that it is not possible or at least very hard to monomorphize higher-

rank polymorphism. We present a novel understanding of monomorphization, which is not only

easy to understand but also generalizes to higher-rank and existential polymorphism. In contrast

to previous work [Griesemer et al. 2020], which also monomorphizes higher-rank polymorphism,

our approach leads to a straightforward implementation and almost trivial correctness proof. The

key contribution of this paper is the following simple idea:

We use a type-based flow analysis to find monomorphic specializations.

We refer to this approach as flow-directed monomorphization.

We describe the analysis and the monomorphization to which it leads in more detail in Section 2,

but want to highlight a few key insights here.

• Performing a type-based flow analysis allows us to factor the process of monomorphization

into three cleanly separated phases (Section 2): a total constraint generation phase that

tracks the flow of types through type variables, a fallible constraint solving phase, and a total

monomorphization phase.

• We identify four kinds of polymorphism: (1) type-parametric functions (Section 2.1), (2)
type-parametric data types and interfaces (Section 2.2), (3) type-parametric constructors,

i.e., existential polymorphism (Section 2.3), (4) type-parametric methods, i.e., higher-rank
polymorphism (Section 2.4).

• While kinds (1), (3), and (4) occur in terms, the second kind of polymorphism only occurs in

types. Constraints for (1), (3), and (4) are introduced by our typing judgment, while constraints

for (2) are introduced by our well-formedness judgment. These two categories of flow are

not mutually recursive (Section 3.3).

• We identify variants of polymorphic recursion, which impede monomorphization, for each

of the above-mentioned four kinds (Section 2.5).

The intended target audience of this paper is implementers of functional languages without sub-

typing. Our approach supports languages with or without higher-rank polymorphism and may

apply to OCaml and Haskell, though we leave this to future work.

1.1 Challenges of Monomorphization
To understand the challenges of monomorphization in general and of higher-rank polymorphism

specifically, consider the following small example in SystemF on the left. We define the identity

function id and a function appPair , which takes an argument f and applies it to each of its other

two arguments, x and y, returning a pair. Importantly, appPair is a higher-rank function, as the

type of f is universally quantified.

1
https://okmij.org/ftp/Computation/typeclass.html
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Example in SystemF

let id = 𝜆A . 𝜆a : A . a
let appPair = ΛX . ΛY .

𝜆f : (∀ Z . Z→ Z) .
𝜆x : X . 𝜆y : Y .

(f X x, f Y y)

appPair Int Bool id 123 false

Possible monomorphization to STLC

let idInt = 𝜆a : Int . a
let idBool = 𝜆a : Bool . a
let appPair =

𝜆fInt : (Int→ Int) .
𝜆fBool : (Bool→ Bool) .
𝜆x : Int . 𝜆y : Bool .
(fInt x, fBool y)

appPair idInt idBool 123 false

When we attempt to convert it to an equivalent program in the simply-typed lambda calculus, we

notice that it is not immediately clear how to monomorphize appPair . Of course, we can easily

specialize X and Y to Int and Bool, respectively, but what can be done about Z (and A respectively)?

Clearly, f is applied to two different types in the body of appPair , so specializing the type Z to one

type is not a valid solution. The astute reader might have come up with a monomorphic version of

this particular program. One possible approach is shown on the right, where we generate two copies

of the polymorphic identity function (specialized to Int and Bool respectively) and then change

appPair to take these two monomorphic functions as separate arguments. However, this approach

changes the arity of appPair and, for instance, prevents us from passing appPair itself as a function
argument without also modifying the callee. While this small example already illustrates some

problems, the difficulty grows with the complexity of the program under consideration, further

underlining the intuition that it is very hard to monomorphize higher-rank polymorphism.

Agreeing with many before us, inspecting the appPair example, we see that monomorphizing

SystemF programs to STLC is indeed challenging. In this paper, we slightly shift the goalposts by:

(1) not using SystemF as the source language of monomorphization, and

(2) not using STLC as the target language of monomorphization.

This reframing is based on the observation that passing two different versions of id is difficult in

STLC, but would be much easier if the target language supported objects. Instead of passing two

functions, we can simply pass a single object with two methods.
We make the additional observation that structural typing in the source language complicates

reasoning about monomorphization, artificially. Instead, if the source language expressed first-class

functions nominally, it would be much easier to track the flow of types through these nominal types.

Expressing function types in terms of nominal types is by now completely standard and common

practice in languages like Scala and Java, which express the function type A → B in terms of an

interface type Function[A, B] with a method apply : A → B.
Figure 1 presents a rendering of the example in our polymorphic source language LangPoly.

Since we pass id as a first-class function, we represent it as an instance of the nominal interface Id.
It is easy to see that id.apply must be specialized to Int and Bool; these are the types with which

it is called at runtime. But how do we determine those types? For example, in order to determine

which specializations are required for A, we simply follow the flow of types. Specifically, type Int
flows into type parameter X, which flows into the type parameter Z on the interface Id. Since id
implements the interface Id, all types that flow into Z also flow into A. Hence, transitively, Int
flows into A and we require a specialization for it. Nominal types help us solve the problem of

specializing id by adding two methods, one specialized to Int and one to Bool.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 116. Publication date: April 2025.
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Example translated to LangPoly

trait Id {

def apply[Z](Z): Z

}

let id = new Id {

def apply[A](a) = a

}

def appPair[X, Y](f: Id, x: X, y: Y) =

(f.apply[X](x), f.apply[Y](y))

appPair[Int, Bool](id, 123, false)

Result of monomorphization to LangMono

trait Id {

def apply_Int(Int): Int

def apply_Bool(Bool): Bool

}

let id = new Id {

def apply_Int(a) = a

def apply_Bool(a) = a

}

def appPair_IntBool(f: Id, x: Int, y: Bool) =

(f.apply_Int(x), f.apply_Bool(y))

appPair_IntBool(id, 123, false)

Fig. 1. Introductory example presented in our source language LangPoly on the left, and the result of
monomorphization to language LangMono on the right.

1.2 Monomorphizing Higher-Rank and Existential Types, and Their Combination
This flow analysis generalizes to large programs and allows us to monomorphize much more

complex examples, like the one in Figure 2. Here, we define a stream parameterized by a universal

element type A and an existential internal state type S. We then define a Church-encoded list of

element type D whose fold operation is parametric over its result type R. We define an infinite

stream nats over the natural numbers of type Stream[Int]. Finally, we define a take function

to extract a prefix of a stream and a sum function over our Church-encoded list, which we call as

follows to find the sum of the first three natural numbers.

sum(take[Int](nats, 3))

There are significant challenges to monomorphizing this program, including existential types in

Stream and higher-rank types in List. Nevertheless, with the techniques described in this paper,

we show that this program is monomorphizable. Moreover, it is actually not that difficult
2
.

1.3 Non-goals
Although we present a type system, we are not interested in type inference or typechecking as

such, but only as a means for supporting monomorphization. Therefore, we require fully type-

annotated programs as input to our monomorphization. Of course, type inference could in principle

be performed as a preprocessing step. Furthermore, monomorphization naturally involves whole-

program analysis and code duplication; there may be complexity issues in the running time of the

transformation and the size of the transformed code, but we do not consider those issues within the

scope of this paper. Similarly, the code we generate might include more duplication than strictly

necessary. Improving the precision of our analysis is interesting and important future work.

Finally, the subject of this work is the monomorphization of higher-rank types, and we do not
claim to be able to monomorphize all programs. In particular, we identify the classes of programs

which we cannot monomorphize, involving polymorphic recursion and related structures, discussed

2
The fully monomorphized program can be found in Appendix A, submitted as supplementary material. Additionally, we

make all of the examples of this and the following section available as supplementary material together with an interactive

web editor that encourages further experimentation.
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Type Definitions

enum Stream[A] {

case Impl[ S ](state: S, next: S ⇒ Option[(A, S)])

}

trait List[D] {

def fold[ R ](alg: Alg[D, R]): R

}

Program

let nats = Impl[Int](0, n ⇒ Some((n, n + 1)));

def take[E](s: Stream[E], n: Int): List[E] {

new List[E] {

def fold[T](alg: Alg[E, T]) { s match {

case Impl[U](state, next) ⇒
if (n ≤ 0) alg.nil()

else next(state) match

case None ⇒ alg.nil()

case Some((value, newState)) ⇒
let s2 = Impl[U](newState, next)

let rest = take[E](s2, n - 1);

alg.cons(value, rest.fold[T](alg))

}}

}

}

trait Alg[B, C] {

def nil(): C

def cons(head: B, tail: C): C

}

def sum(l: List[Int]): Int {

l.fold[Int](new Alg[Int, Int] {

def nil() { 0 }

def cons(head, tail) {

head + tail

}

})

}

Fig. 2. Motivational example combining the use of higher-rank polymorphism and existential types, high-
lighted in gray .

in Section 2.5. Instead, we advance the state of the art by describing a simple flow-based approach

that supports a larger class of programs than commonly thought possible.

1.4 Contributions
• Essence of Monomorphization: We identify the flow of types as the guiding principle of
monomorphization, which admits simple formalizations and implementations.

• Monomorphizing higher-rank types and existentials: The same guiding principle works

for monomorphizing higher-rank types and existential types.

• Polymorphic Packing: Supporting both higher-rank types and existential types, we identify

and discuss the problem of polymorphic packing as the dual to polymorphic recursion in a

unifying framework.

• Partially Streamable Monomorphization: Our monomorphization strategy consists of

three steps: gathering constraints, solving constraints, and applying the solution. Of these,

only the constraint solving step requires information from the entire program to be in

memory; the other steps can be performed as stream processing.

• Calculi:We define two languages: the polymorphic LangPoly and the correspondingmonomor-

phic LangMono. For each, we define a semantics and type system. We further define formally

a monomorphization strategy from LangPoly to LangMono.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 116. Publication date: April 2025.
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• Metatheory: We demonstrate the critical properties of our transformation: it is type- and

semantics-preserving. Putting the flow of types center stage, the proofs of these properties

become almost trivial.

• Implementation: We implement monomorphization in a prototype based on LangPoly. The
implementation supports all features in LangPoly, as well as practically motivated extensions,

attesting to their implementability.

1.5 Limitations
• Polymorphic Recursion: Our monomorphization technique cannot be applied to programs

featuring polymorphic recursion.

• Whole-program Compilation: As common for monomorphization, part of our technique

requires access to the entire source of the program, meaning it cannot be performedmodularly.

• Overapproximation: Due in part to our use of nominal types to represent higher-order

and existential types, our monomorphization technique in some circumstances results in the

generation of unused code.

• Subtyping: While our calculus includes higher-order and existential types, it does not

support subtyping. Significant adaptations might be needed to apply our monomorphization

technique to a language with subtyping.

1.6 Structure of the Paper
The rest of the paper is organized as follows: In Section 2, we describe our monomorphization

technique through several examples. In Section 3, we present our source language LangPoly, our
target language LangMono, monomorphization between them, and theorems. In Section 4, we

describe our implementation, including extensions and differences from the formalism. In Section 5,

we discuss related work.

2 Flow-Directed Monomorphization by Example
In this section, we provide an overview of our approach with examples of increasing complexity.

We close this section with a demonstration of the limitations of our approach, providing examples

that we cannot monomorphize.

2.1 Monomorphizing First-order Programs
Let us start with a simple first-order program with polymorphic function definitions. While the

monomorphization of such programs is not challenging, doing so allows us to introduce the basic

idea in a simple setting. Consider the following program, written in our polymorphic source

language LangPoly with some minor syntactic extensions.

def first[A](x: A, y: A) { x }

def second[B](x: B, y: B) { first[B](y, x) }

def main() {

second[Int](1, 2);

second[String]("one", "two")

}

The example defines two polymorphic functions. Function first returns the first of its arguments,

of type A. Function second is implemented in terms of first and is polymorphic in type B. For
ease of presentation, we assume that all type variables that occur in the program are distinctly

named. Finally, we define a function main that calls second at types Int and String. Abstraction
as well as instantiation of types is explicit.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 116. Publication date: April 2025.
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Our goal is to monomorphize this program. In other words, we want to transform it into an

equivalent program, which does not abstract over types, by creating a copy of each polymorphic

function for each type it is used at. We do so in three steps.

Step 1. Constraint Collection. Firstly, we gather a set of constraints C that captures the flow of

types into type variables. We get one constraint for each function call, three in this example.

C = { B ⊑ A, Int ⊑ B, String ⊑ B }
We read the inequality constraint Int ⊑ B as "type Int flows into type parameter B". At some calls,

we have ground types, like Int and String flowing into the type variable of the definition, while at

others, we have type variables like B flowing into it.

Step 2. Constraint Solving. Secondly, we compute a solution S of these constraints as their

transitive closure. The solution maps type variables to sets of ground types.

S = A ↦→ { Int, String }, B ↦→ { Int, String }
We want the solution S to satisfy each constraint in C. Intuitively, this ensures that for every
function call at a type, that type is in the set of the corresponding type variable. In other words, we

compute an upper bound on the set of ground types that might flow into each type variable.

Step 3. Specialization. Finally, given the solution, we create a copy of each polymorphic function

definition for each of the types in the set of its type variable. The following is the resulting program

in our monomorphic language LangMono, again with some mild syntactic extensions.

def first_Int(x: Int, y: Int) { x }

def first_String(x: String, y: String) { x }

def second_Int(x: Int, y: Int) {

first_Int(y, x) }

def second_String(x: String, y: String) {

first_String(y, x) }

def main() {

second_Int(1, 2)

second_String("one", "two")

}

We have replaced every function call with a call to the corresponding specialized function following

a naming convention. The resulting program is well-typed (Theorem 3.4) and step-for-step behaves

the same as the original (Theorem 3.10).

2.2 Monomorphizing Type Declarations
Another useful form of polymorphism is polymorphic type declarations. Consider the following

example, where we define a polymorphic data type Lazy and a polymorphic interface type Get.

enum Lazy[A] {

case Present(A)

case Absent(Get[A])

}

trait Get[B] {

def get(Unit): B

}

def main() {

let x = Lazy[Int].Present(123);

new Get[Bool] { def get(y) = false }

}

The Lazy data type has two constructors: Present, with a parameter of type A; and Absent, with
a parameter of type Get[A]. The Get interface has one definition, get, with return type B. In the

main function, we construct one value of each type: a Lazy[Int] and a Get[Bool].
As before, we track the flow of types into type variables. Each use of a polymorphic type gives

rise to a constraint, including the appearance of Get[B] in the Absent constructor, which gives

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 116. Publication date: April 2025.
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rise to an additional constraint associating A and B:

C = { A ⊑ B, Int ⊑ A, Bool ⊑ B }
The solution of these constraints reflects the flow of the type Bool through A and into B:

S = A ↦→ { Int }, B ↦→ { Int, Bool }
Again, the solution indicates the set of ground types that flow into each type variable. For type

declarations, this intuitively represents the set of specializations of the type that might occur at

run time. For each ground type flowing into a type’s type parameter, we create a specialized copy

of the type. In this example, the monomorphized program has one copy of the Lazy type and two

copies of the Get type.

enum Lazy_Int {

case Present(Int)

case Absent(Get_Int)

}

trait Get_Int {

def get(): Int

}

trait Get_Bool {

def get(): Bool

}

def main() {

let x = Lazy_Int.Present(123);

new Get_Bool { def get(y) = false }

}

We change the main function to make reference to the specialized types. The result is again a

well-typed monomorphic program, behaving the same as the original.

2.3 Monomorphizing Existential Polymorphism
The languages LangPoly and LangMono that we consider both feature nominal algebraic data types.

Existential types are those where a type variable is bound at a constructor. As an example, consider

the program in Figure 3 that defines a data type Showable with a single constructor pack. The
constructor existentially hides a type A, together with a value of type A, and a function that converts

this type to String. Function printShowable unpacks the given existential package into a value

v: B and a function f: B → String. It uses the function to render the value to a string and then

prints the result. In main, we apply this function twice: once to an integer value packed together

with a primitive function that converts it to a string, and once with a string packed together with a

monomorphic identity function. We again monomorphize this program in three steps, where in the

first two we gather constraints and compute their transitive closure. Similar to type abstractions

and their applications, for every use of a constructor we generate a constraint that the type it is

used at flows into the existential type variable at its definition. Additionally, we track the flow of A
into B in the pattern match.

C = { Int ⊑ A, String ⊑ A, A ⊑ B }
This is one of our key ideas: types flow from constructors into the type parameters at the type

definition. From there they continue to flow into the type variables at pattern matches.

S = A ↦→ { Int, String }, B ↦→ { Int, String }
The solution now contains the set of all ground types that flow into the existential type variable

A and transitively into B. To actually monomorphize this program we create a monomorphic

constructor for each of those types. This is another one of our key ideas: we specialize existentials

by creating a constructor for each ground type. Moreover, in every pattern match on this existential

type, we create a copy of the clause for each created constructor. Again, the resulting program is

well-typed and step-for-step behaves the same as the original. In the above example, the type of v
is now monomorphized to Int and String in the two different copies, respectively.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 116. Publication date: April 2025.
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Before Monomorphization

enum Showable {

case pack[A](A, A → String)

}

def printShowable(s: Showable) {

s match {

case pack[B](v, f) ⇒ print(f(v))

}

}

def main() {

printShowable(pack[Int](5,

x ⇒ intToString(x)))

printShowable(pack[String]("hi",

x ⇒ x))

}

After Monomorphization

enum Showable {

case pack_Int(Int, Int → String)

case pack_String(String, String → String)

}

def printShowable(s: Showable) {

s match {

case pack_Int(v, f) ⇒
print(f(v))

case pack_String(v, f) ⇒
print(f(v))

}

}

def main() {

printShowable(pack_Int(5,

x ⇒ intToString(x)))

printShowable(pack_String("hi",

x ⇒ x))

}

Fig. 3. Monomorphizing existential types.

Before Monomorphization

let t = new CBool {

def choose[B](x: B, y: B) { x }

};

let f = new CBool {

def choose[C](x: C, y: C) { y }

};

trait CBool {

def choose[A](x: A, y: A): A

}

def main() {

t.choose[CBool](t, f).choose[Int](1, 0)

}

After Monomorphization

let t = new CBool {

def choose_CBool(x, y) { x }

def choose_Int(x, y) { x }

};

let f = new CBool {

def choose_CBool(x, y) { y }

def choose_Int(x, y) { y }

};

trait CBool {

def choose_CBool(x: CBool, y: CBool): CBool

def choose_Int(x: Int, y: Int): Int

}

def main() {

t.choose_CBool(t, f).choose_Int(1, 0)

}

Fig. 4. Monomorphizing higher-rank polymorphism.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 116. Publication date: April 2025.
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2.4 Monomorphizing Higher-Rank Polymorphism
We consider languages which, in addition to algebraic data types, have nominal interface types that

declare potentially polymorphic methods, and objects that implement them. Those polymorphic

methods correspond to higher-rank polymorphism. In the example program in Figure 4, modeling

Church-encoded Booleans, we define the interface CBoolwith a single polymorphic method choose.
We then implement an object t where the method chooses its first argument, and an object f where
the method chooses its second argument. Finally, we invoke the method choose to choose between
the two objects, and invoke choose on the result to choose between one and zero. We use the

same three steps to monomorphize this program. For every invocation of a polymorphic method,

we track the flow of the type it is used at into the type parameter of the method in the interface.

Additionally, we track the flow of these type variables into the method definitions.

C = { CBool ⊑ A, Int ⊑ A, A ⊑ B, A ⊑ C }

In this example, the solution S is surprisingly simple. Note that the example contains indirect

control flow, and that we instantiate a type variable with a polymorphic type.

S = A ↦→ { CBool, Int }, B ↦→ { CBool, Int }, C ↦→ { CBool, Int }

To monomorphize, we create a new method in the interface for each ground type in the solution set

of its type parameter. This is another key idea: we specialize polymorphic functions by creating a

monomorphic method for each ground type. Accordingly, in every implementation of the interface,

we create copies of every polymorphic method for each of those types. Variables x and y thus have

types CBool and Int in the respective specialization. Finally, we invoke the specialized methods

following a naming convention.

2.5 Four Kinds of Polymorphic Recursion
Clearly, there are classes of programs that we cannot monomorphize. Thanks to our uniform

treatment of the four different kinds of polymorphism, we identify four kinds of polymorphic

recursion, which manifest in cyclic flow, and which we detect through a type flow analysis.

2.5.1 Polymorphically Recursive Functions. The first such class is a standard limitation of monomor-

phization: polymorphic recursion [Mycroft 1984]. While well-known, we illustrate how it manifests

and how we detect it. For polymorphic recursion to cause an infinite set of specializations, at least

one polymorphic type, such as Box, is required:

enum Box[B] {

case Wrap(B)

}

def f[A](x: A) {

f[Box[A]](Wrap(x)); x

}

def main() {

f[Int](5)

}

The constraints we gather are { Box[A] ⊑ A, Int ⊑ A }. Solving these, we reach an intermediate

solution A ↦→ { Box[A], Int } and notice A occurs under a type constructor in its own set. As usual,

this would lead to unbounded specializations: Int, Box[Int], Box[Box[Int] ], and so on. We use a

simple type flow analysis to detect and rule out such cases.

2.5.2 Polymorphically Recursive Types. Types themselves may also exhibit polymorphic recursion,

even in the absence of polymorphic functions. A classic example is balanced binary trees.
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enum Tree[A] {

case Leaf(A)

case Branch(Tree[Two[A]]) }

enum Two[B] {

case Both(B, B)

}

def main() {

Tree[Int].Leaf(123)

}

The constraints arising from this program are { Two[A] ⊑ A, A ⊑ B, Int ⊑ A }. This example

presents a problem for monomorphization, as it requires an infinite number of type specializations,

manifested as the recursive constraint Two[A] ⊑ A. Again, a type flow analysis identifies this

problem, and we do not attempt to monomorphize it.

2.5.3 Polymorphically Recursive Methods. Recursive functions are not the only way to cause

polymorphic recursion. A more indirect way to achieve the same situation is through interfaces

and polymorphic methods, such as Forall in the following example:

trait Forall {

def rec[A](f: Forall, a: A): A

}

def main() { x.rec[Int](x, 0) }

let x = new Forall {

def rec[B](f: Forall, a: B) {

f.rec[Box[B]](f, Wrap(a)); a

}};

Here, we gather constraints { A ⊑ B, Box[B] ⊑ A, Int ⊑ A }. While the program does not in-

volve recursive functions directly, we still get recursive constraints, which we again recognize as

such with a type flow analysis.

2.5.4 Polymorphic Packing. Finally, and more surprisingly, we also gather recursive constraints in

the following example involving an existential type Dynamic, but again no term-level recursion.

enum Dynamic {

case Hide[A](A)

}

def main() {

let x = Hide[Int](0);

match x { case Hide[B](x: B) ⇒ Hide[Box[B]](Wrap(x)) }

}

For this example, we gathered constraints { A ⊑ B, Box[B] ⊑ A, Int ⊑ A } – exactly the same

as in the previous example. We refer to this variant of polymorphic recursion, which is introduced

by repacking an existential type, as polymorphic packing to set it apart from the other variants,

which actually require an unbounded number of types at runtime. All three forms have in common

that they introduce a non-trivial cycle in the gathered constraints.

While we have identified the problem of polymorphic packing, at this time, we do not know

its practical implications. So far, we can only speculate about possible mitigations, and leave a

deeper investigation to future work. In some cases, for instance in the last example, programs could

still be monomorphized with a more precise static analysis. Perhaps it is even possible to fully

monomorphize programs even in the presence of polymorphic recursion and polymorphic packing.

At the moment, however, we do not have a definitive answer to this question.

Having introduced our approach by example, in the next section, we formally present our

polymorphic source language LangPoly, our monomorphic target language LangMono, monomor-

phization from the former into the latter, and theorems about this translation.
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3 Formalization
We start our formal presentation by describing the syntax, typing, and semantics of two languages:

LangPoly, our polymorphic source language, and LangMono, our monomorphic target language.

We then describe monomorphization as a translation from the source language to the target

language. Monomorphization takes well-typed programs to well-typed programs (Theorem 3.4),

and preserves their semantics step-for-step (Theorem 3.10).

3.1 Source Language
Our source language LangPoly features top-level functions, nominal data types (enum), and

nominal interface types (trait). Top-level functions and types, data type constructors, and methods

are polymorphic, expressing ordinary rank-1 polymorphism, existential polymorphism, and higher-

rank polymorphism, respectively. The calculus is designed to admit a concise presentation of our

approach to monomorphization, and we thus purposefully omit other features, such as first-class

functions and local function definitions. It is not difficult to express first-class functions using

interfaces and lift local function definitions to the top level before monomorphizing them.

Terms:
Programs P ::= f ↦→ { [𝛼] (x : 𝜏) ⇒ t }, ...
Terms t ::= v

| x
| let x = t; t
| f [𝜏] (x)
| c[𝜏] (x)
| x match T [𝜏] { c[𝛼] (x) ⇒ t, ... }
| new T [𝜏] { m[𝛼] (x) ⇒ t, ...}
| x .m[𝜏] (x)

Values v ::= 0 | true | ”hello” | ...
Types:
Types 𝜏 ::= Int | Bool | String | ...

| 𝛼

| T [𝜏]
Ground Types 𝜌 ::= Int | Bool | String | ...

| T [𝜌]
Environment Types Γ ::= Γ, x : 𝜏

| Γ, 𝛼
| ∅

Function Types Δ ::= f : ∀ 𝛼 . 𝜏 → 𝜏, ...

Signatures Σ ::= enum T [𝛼] { c[𝛼] (𝜏), ...}, trait T [𝛼] { m[𝛼] (𝜏) : 𝜏, ...} ...
Names:
Term Variables x ∈ x, y, k, ... Type Names T ∈ List, Func ...
Type Variables 𝛼 ∈ A, B, C, ... Constructor Names c ∈ pack, cons, ...
Function Names f ∈ f, g, h, ... Method Names m ∈ apply, next, ...

Fig. 5. Syntax of the polymorphic source language LangPoly.

The syntax of LangPoly is defined in Figure 5. A program P is a map from function identifiers f
to their implementations [𝛼] (x : 𝜏) ⇒ t. For simplicity, each function consists of exactly one type

parameter 𝛼 , one type-annotated term parameter x : 𝜏 , and the body of the function t. The syntax
of terms t includes the usual constructs of primitive values v (including integers, Booleans, strings,
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and so on), variables (ranged over by x), and let-bindings. To simplify our formalization and the

proofs, without loss of generality, we present the calculus in a normal form similar to fine-grain call-

by-value [Levy 1999], where arguments to calls, scrutinees, and receivers are required to be variables.

This way, the treatment of composite terms is confined to let-bindings, as usual with this form of

presentation. Function application, denoted f [𝜏] (x), applies the polymorphic function f to the type
argument 𝜏 and argument x. The pattern matching expression x0 match T [𝜏0] { c[𝛼] (x) ⇒ t, ... }
matches on x0. In case c of data type T , the type argument of c will be bound to 𝛼 and the argument

of c will be bound to x in the body t. The constructor call c[𝜏] (x) creates a data value of case

c with type argument 𝜏 and argument x. Method invocation x0.m[𝜏] (x) calls method m on the

object x0, applying it to the type argument 𝜏 and argument x. Objects are constructed using

new T [𝜏0] { m[𝛼] (x) ⇒ t, ... }, creating a new instance of the interface T with implementations

for methods with names m. Each method binds a type parameter 𝛼 and a parameter x in its body

t. Types are either primitive types (e.g., Int), type variables 𝛼 , or type constructors T applied to

a type 𝜏 . Ground types 𝜌 are the subset of types that do not contain type variables. As usual, the

type environment Γ maps variables to their types (Γ, x : 𝜏) or brings type variables (Γ, 𝛼) into
scope. It is defined inductively in order to preserve the scoping information between types and type

variables. The function environment Δ is a map from function identifiers f to their polymorphic

types ∀ 𝛼 . 𝜏1 → 𝜏2. The signature environment Σ maps data types (enum) and interfaces (trait)
to a list of their constructors and methods, respectively.

3.1.1 Typing. The typing rules for our polymorphic source language LangPoly are shown in

Figure 6. The typing judgments for terms and programs are defined with respect to signature

environment Σ and function environment Δ, which are globally defined. Types can be recursive and

mutually recursive through Σ. As usual, in all rules, we silently assume standard well-formedness

of the typing context and well-formedness of all types with respect to the signature environment Σ
and typing context Γ, meaning that all mentioned type variables must be in scope.

Rule Literal represents the set of rules addressing constant values. These, along with Variable,

and Let are entirely standard. Rule Call types a function application f [𝜏] (x1) by looking up the

function f in the function environment Δ, instantiating the type parameter 𝛼 with the provided type

𝜏 , requiring the argument x to match the instantiated parameter type 𝜏1 [𝛼 ↦→ 𝜏], and typing the

result against the instantiated return type 𝜏2 [𝛼 ↦→ 𝜏]. Rule Match types a pattern-match expression

x0 match T [𝜏0] { c[𝛼] (x) ⇒ t, ... } by looking up the definition of data type T in the signature

environment Σ, requiring that the variable x0 be mapped to T [𝜏0] in the type environment, and

typing each branch under an environment where x is typed as the argument to the constructor,

instantiated with 𝛼 and 𝜏0. Each branch must be typed against the same 𝜏 , which is the result type of

the match expression. Rule Construct types a constructor call c[𝜏] (x1) by looking up the data type
T in the signature environment Σ and requiring that x1 be mapped in the type environment Γ to the

type of the constructor argument, instantiated with the type argument 𝜏 and 𝜏0. The result type is

the constructed data type T [𝜏0]. Rule Invoke types a method invocation expression x0.m[𝜏] (x1) by
requiring that x0 be mapped to an object type T [𝜏0] in the type environment, looking up T in the

signature environment, and requiring that x1 be mapped in the type environment Γ to the method

argument type instantiated with the type argument 𝜏 and 𝜏0. Rule New types object creation

new T [𝜏0] { m[𝛼] (x) ⇒ t, ... } by looking up the interface T in the signature environment and

typing each method body under an environment where x is typed as the argument to the method,

instantiated with 𝛼 and 𝜏0. Each method’s body type must match the respective signature’s return

type, instantiated with 𝛼 and 𝜏0. The result type is the annotated interface T [𝜏0].
A program is well-typed if all function definitions therein are well-typed in accordance with

function environment Δ, through which functions can be recursive and mutually recursive.
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Typing of Terms Σ | Δ | Γ ⊢ t : 𝜏

Σ | Δ | Γ ⊢ true : Bool
[Literal] Γ(x) = 𝜏

Σ | Δ | Γ ⊢ x : 𝜏
[Variable]

Σ | Δ | Γ ⊢ t0 : 𝜏0 Σ | Δ | Γ, x0 : 𝜏0 ⊢ t : 𝜏

Σ | Δ | Γ ⊢ let x0 = t0; t : 𝜏
[Let]

Δ(f ) = ∀ 𝛼 . 𝜏1 → 𝜏2 Γ(x1) = 𝜏1 [𝛼 ↦→ 𝜏]
Σ | Δ | Γ ⊢ f [𝜏] (x1) : 𝜏2 [𝛼 ↦→ 𝜏]

[Call]

enum T [𝛼0] { c[𝛼1] (𝜏1), ... } ∈ Σ Γ(x1) = 𝜏1 [𝛼0 ↦→ 𝜏0, 𝛼1 ↦→ 𝜏]
Σ | Δ | Γ ⊢ c[𝜏] (x1) : T [𝜏0]

[Construct]

enum T [𝛼0] { c[𝛼1] (𝜏1), ... } ∈ Σ Γ(x0) = T [𝜏0]
Σ | Δ | Γ, 𝛼, x : 𝜏1 [𝛼0 ↦→ 𝜏0, 𝛼1 ↦→ 𝛼] ⊢ t : 𝜏 ...

Σ | Δ | Γ ⊢ x0 match T [𝜏0] { c[𝛼] (x) ⇒ t, ... } : 𝜏
[Match]

trait T [𝛼0] { m[𝛼1] (𝜏1) : 𝜏2, ... } ∈ Σ
Σ | Δ | Γ, 𝛼, x : 𝜏1 [𝛼0 ↦→ 𝜏0, 𝛼1 ↦→ 𝛼] ⊢ t : 𝜏2 [𝛼0 ↦→ 𝜏0, 𝛼1 ↦→ 𝛼] ...

Σ | Δ | Γ ⊢ new T [𝜏0] { m[𝛼] (x) ⇒ t, ... } : T [𝜏0]
[New]

trait T [𝛼0] { m[𝛼1] (𝜏1) : 𝜏2, ... } ∈ Σ Γ(x0) = T [𝜏0] Γ(x1) = 𝜏1 [𝛼0 ↦→ 𝜏0, 𝛼1 ↦→ 𝜏]
Σ | Δ | Γ ⊢ x0 .m[𝜏] (x1) : 𝜏2 [𝛼0 ↦→ 𝜏0, 𝛼1 ↦→ 𝜏]

[Invoke]

Typing of Programs Σ | Δ ⊢ P : Δ

Σ | Δ | 𝛼, x : 𝜏1 ⊢ t : 𝜏2 ...

Σ | Δ ⊢ f ↦→ { [𝛼] (x : 𝜏1) ⇒ t }, ... : f : ∀ 𝛼 . 𝜏1 → 𝜏2, ...
[Program]

Fig. 6. Typing rules for the polymorphic source language LangPoly.

Syntax:
Machines M ::= ⟨ t K E P ⟩

Contexts K ::= { x ⇒ t, E } :: K | •

Environments E ::= E, x ↦→ v | •

Values v ::= ...

| c[𝜌] (v)
| (E, { m[𝛼] (x) ⇒ t, ...})

Stepping relation:
(con) ⟨ c[𝜌] (x1) K E P ⟩ → ⟨ c[𝜌] (E(x1)) K E P ⟩

(mat) ⟨x0 match T [𝜌0] { c[𝛼] (x) ⇒ t, ... } K E P ⟩ → ⟨ t [𝛼 ↦→ 𝜌] K E, x ↦→ v P ⟩
where E(x0) = c[𝜌] (v)

(new) ⟨new T [𝜌0] { m[𝛼] (x) ⇒ t, ...} K E P ⟩ → ⟨ (E, { m[𝛼] (x) ⇒ t, ...}) K E P ⟩

(inv) ⟨x0 .m[𝜌] (x1) K E P ⟩ → ⟨ t [𝛼 ↦→ 𝜌] K E0, x ↦→ E(x1) P ⟩
where E(x0) = (E0, { m[𝛼] (x) ⇒ t, ...})

Fig. 7. Abstract machine for LangPoly with selected stepping rules that illustrate the flow of types at runtime.
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3.1.2 Semantics. We define the semantics of LangPoly in terms of the abstract machine in Figure 7.

The machine is a 4-tuple ⟨ t K E P ⟩ consisting of a term t, a context K corresponding to a

stack of let-bindings, an environment E mapping variables to their values, and a program P
containing the global function definitions. We extend values v to additionally include runtime

values such as constructors containing their evaluated arguments and objects containing their

respective closure environments. Note that we can syntactically differentiate between constructor

calls c[𝜌] (x) and constructed values c[𝜌] (v). The final state of the abstract machine is ⟨v • E P ⟩.
Maybe surprisingly, our abstract machine semantics is environment-based for term-variables and

substitution-based for type-variables. Type substitutions at runtime exactly correspond to the flow

of types that we want to capture with our constraints. While they are operationally irrelevant,

having a source language with explicit type annotations and substituting types at runtime simplifies

proving properties of monomorphization. Figure 7 also lists definitions of selected stepping rules

that illustrate this runtime flow of types. For existential types, we can observe how in rule (con)
the type 𝜌 flows from the constructor call to the value stored in the environment. Importantly, the

constructed value c[𝜌] (v) closes over the type 𝜌 . Later, when pattern matching in rule (mat), we
extract 𝜌 and use it to substitute for 𝛼 , hence continuing the flow within t. Dually, for universal
types, rule (new) constructs an object where the implementation is still parametric in 𝛼 . Later, in

rule (inv), when invoking method m, the type argument 𝜌 flows into the body t. Since terms are

closed with respect to types at runtime, we only ever substitute type parameters by ground types 𝜌 .

As we will see, this property is important to establish a connection to the monomorphized variant,

which also only mentions ground types.

3.2 Target Language
Our monomorphic target language LangMono (Figure 8) is like our source language LangPoly, but
without polymorphism. As a monomorphic language, it thus only includes ground types 𝜌 . Neither

functions, types, constructors, nor methods take type parameters. Instead, their identifiers are

indexed by a ground type, as in f𝜌 , T𝜌 , c𝜌 , m𝜌 . In our formalization, these ground types are part of

the identifier name and uniquely determine the respective monomorphic variant. In practice, more

advanced mapping schemes or naming conventions must be used. By abuse of notation, we use the

isomorphic sets of ground types 𝜌 of LangPoly and of LangMono interchangeably.

3.2.1 Typing. Figure 9 defines the typing rules for our target language LangMono. The type system
is almost the same as for LangPoly, save for polymorphism. Typing contexts Γ now map variables

to ground types, and functions, constructors, and methods all have monomorphic types.

3.2.2 Semantics. Like for LangPoly, the semantics of LangMono is given in terms of an abstract

machine (Figure 10). Since there are no type variables, we also never substitute any types. Conse-

quently, instead of closing over the existential type in rule (con), we use the tag for the respective
monomorphic constructor. While in the source language, pattern matching clauses had the shape

c[𝛼] (x) ⇒ t, binding type parameter 𝛼 , in the monomorphized variant, pattern matches need to be

prepared to handle the monomorphized constructor tag c𝜌 (x) ⇒ t. As we show in the remainder

of this section, our translation ensures that this is the case.

3.3 Monomorphization
Like already demonstrated by example in Section 2, we perform monomorphization in three steps:

(1) constraint collection, (2) constraint solving, and (3) specialization. We now go through each of

these steps formally, before presenting metatheoretical properties about our translation.
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Terms:
Programs P ::= f𝜌 ↦→ { (x : 𝜌 ) ⇒ t }, ...
Terms t ::= v

| x
| let x = t; t
| f𝜌 (x)
| c𝜌 (x)
| x match T𝜌 { c𝜌 (x) ⇒ t, ... }
| new T𝜌 { m𝜌 (x) ⇒ t, ...}
| x . m𝜌 (x)

Values v ::= 0 | true | ”hello” | ...

Types:
Ground Types 𝜌 ::= Int | Bool | String | ...

| T𝜌
Environment Types Γ ::= Γ, x : 𝜌

| ∅
Function Types Δ ::= f𝜌 : 𝜌 → 𝜌 , ...

Signatures Σ ::= enum T𝜌 { c𝜌 (𝜌) , ...}, trait T𝜌 { m𝜌 (𝜌) : 𝜌 , ...} ...

Names:
Term Variables x ∈ x, y, k, ... Type Names T𝜌 ∈ List_Int, Func_Bool ...
Type Variables none Constructor Names c𝜌 ∈ pack_Int, cons_Bool, ...
Function Names f𝜌 ∈ f_Int, g_Bool ... Method Names m𝜌 ∈ apply_Int, next_Bool, ...

Fig. 8. Syntax of the monomorphic target language LangMono, without any type parameters and polymor-
phism. Changes highlighted in gray .

3.3.1 Step 1. Constraint Collection. Our monomorphization procedure is based on tracking the

flow of types into type variables. We represent this flow in terms of constraints using the syntax

𝜏 ⊑ 𝛼 , pronounced "𝜏 flows into 𝛼". Figure 11 defines constraint collection by extending the typing

judgment of Figure 6 to a 6-point relation with an additional output emitting constraint sets C.
While written in inference style, the input to this phase is the entire typing derivation, meaning no

inference is performed here. Besides the constraint generation, the rules are identical to the ones

presented in Figure 6. Types flow into type variables in type applications, such as Construct

and Invoke, where we emit a constraint 𝜏 ⊑ 𝛼1. Type variables flow into other type variables in

rules Match and New, where we emit constraint 𝛼1 ⊑ 𝛼 . All other rules, such as Let, simply

accumulate the constraints from their subterms.

Well-formedness generates constraints. Wherever they appear in the rules, types are assumed to be

well-formed. While it is not unusual to implicitly require well-formedness of types with regard to

free type variables, in our formalization they emit additional constraints. Intuitively, this is because

the instantiation of a polymorphic type gives rise to a flow of the type argument into the type

parameter. Concretely, whenever a type T [𝜏] appears, there is a constraint 𝜏 ⊑ 𝛼 , where T [𝛼] is a
polymorphic data type or interface. For example, with explicit well-formedness requirements, rule

Invoke looks like the following.

Γ ⊢ T [𝜏0] ⇒ C0 Γ ⊢ 𝜏1 [𝛼0 ↦→ 𝜏0, 𝛼1 ↦→ 𝜏] ⇒ C1 Γ ⊢ 𝜏2 [𝛼0 ↦→ 𝜏0, 𝛼1 ↦→ 𝜏] ⇒ C2
trait T [𝛼0] { m[𝛼1] (𝜏1) : 𝜏2, ... } ∈ Σ Γ(x0) = T [𝜏0] Γ(x1) = 𝜏1 [𝛼0 ↦→ 𝜏0, 𝛼1 ↦→ 𝜏]

Σ | Δ | Γ ⊢ x0 .m[𝜏] (x1) : 𝜏2 [𝛼0 ↦→ 𝜏0, 𝛼1 ↦→ 𝜏] ⇒ { 𝜏 ⊑ 𝛼1 } ∪ C0 ∪ C1 ∪ C2
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Typing of Terms Σ | Δ | Γ ⊢ t : 𝜌

Σ | Δ | Γ ⊢ true : Bool
[Literal] Γ(x) = 𝜌

Σ | Δ | Γ ⊢ x : 𝜌
[Variable]

Σ | Δ | Γ ⊢ t0 : 𝜌0 Σ | Δ | Γ, x0 : 𝜌0 ⊢ t : 𝜌

Σ | Δ | Γ ⊢ let x0 = t0; t : 𝜌
[Let]

Δ( f𝜌 ) = 𝜌1 → 𝜌2 Γ(x1) = 𝜌1

Σ | Δ | Γ ⊢ f𝜌 (x1) : 𝜌0
[Call]

enum T𝜌0
{ c𝜌 (𝜌1) , ... } ∈ Σ Γ(x1) = 𝜌1

Σ | Δ | Γ ⊢ c𝜌 (x1) : T𝜌0

[Construct]

enum T𝜌0
{ c𝜌 (𝜌1) , ... } ∈ Σ Γ(x0) = T𝜌0

Σ | Δ | Γ, x : 𝜌1 ⊢ t : 𝜌2 ...

Σ | Δ | Γ ⊢ x0 match T𝜌0
{ c𝜌 (x) ⇒ t, ... } : 𝜌2

[Match]

trait T𝜌0
{ m𝜌 (𝜌1) : 𝜌2 , ... } ∈ Σ Σ | Δ | Γ, x : 𝜌1 ⊢ t : 𝜌2 ...

Σ | Δ | Γ ⊢ new T𝜌0
{ m𝜌 (x) ⇒ t, ... } : T𝜌0

[New]

trait T𝜌0
{ m𝜌 (𝜌1) : 𝜌2 , ... } ∈ Σ Γ(x0) = T𝜌0

Γ(x1) = 𝜌1

Σ | Δ | Γ ⊢ x0 . m𝜌 (x1) : 𝜌2
[Invoke]

Typing of Programs Σ | Δ ⊢ P : Δ

Σ | Δ | x : 𝜌1 ⊢ t : 𝜌2 ...

Σ | Δ ⊢ f𝜌 ↦→ { (x : 𝜌1 ) ⇒ t }, ... : f : 𝜌1 → 𝜌2 , ...
[Program]

Fig. 9. Typing rules for themonomorphic target language LangMono. All involved types are nowmonomorphic.
Differences to the polymorphic source language highlighted in gray .

Syntax:
Machines M ::= ⟨ t K E P ⟩

Contexts K ::= { x ⇒ t, E } :: K | •

Environments E ::= E, x ↦→ v | •

Values v ::= ...

| c𝜌 (v)
| (E, { m𝜌 (x) ⇒ t, ...})

Stepping relation:
(con) ⟨ c𝜌 (x1) K E P ⟩ → ⟨ c𝜌 (E(x1)) K E P ⟩

(mat) ⟨x0 match T𝜌0
{ c𝜌 (x) ⇒ t, ... } K E P ⟩ → ⟨ t K E, x ↦→ v P ⟩

where E(x0) = c𝜌 (v)

(new) ⟨new T𝜌0
{ m𝜌 (x) ⇒ t, ...} K E P ⟩ → ⟨ (E, { m𝜌 (x) ⇒ t, ...}) K E P ⟩

(inv) ⟨x0 . m𝜌 (x1) K E P ⟩ → ⟨ t K E0, x ↦→ E(x1) P ⟩
where E(x0) = (E0, { m𝜌 (x) ⇒ t, ...})

Fig. 10. Abstract machine for LangMono and selected stepping rules. Differences to the semantics of the
polymorphic source language are highlighted in gray .
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The purpose of well-formedness constraints like Γ ⊢ T [𝜏0] ⇒ C0 is twofold. As usual, they

ensure that type variables are well-scoped and therefore prevent existentially bound type parameters

from escaping. In our setting, they also track the flow of types into type parameters of nested types

and make sure we create monomorphic variants of deeply nested types like List[List[Int]]. The
well-formedness judgment Γ ⊢ 𝜏 ⇒ C is defined as follows:

Σ | Γ ⊢ Int ⇒ ∅
[Primitive]

𝛼 ∈ Γ

Σ | Γ ⊢ 𝛼 ⇒ ∅
[Polymorphic]

Γ ⊢ 𝜏0 ⇒ C
enum T [𝛼0] { c[𝛼1] (𝜏1), ... } ∈ Σ

Σ | Γ ⊢ T [𝜏0] ⇒ { 𝜏0 ⊑ 𝛼0 } ∪ C
[Enum]

Γ ⊢ 𝜏0 ⇒ C
trait T [𝛼0] { m[𝛼1] (𝜏1) : 𝜏2, ... } ∈ Σ

Σ | Γ ⊢ T [𝜏0] ⇒ { 𝜏0 ⊑ 𝛼0 } ∪ C
[Trait]

3.3.2 Step 2. Constraint Solving. In a second step, we compute a solution S of the gathered con-

straints C as their transitive closure. A solution S ::= 𝛼 ↦→ {𝜌, ...}, ... is a map from type variables to

finite sets of ground types. In presence of polymorphic recursion or polymorphic packing, we might

fail to find a finite solution (Section 2.5), in which case we cannot monomorphize the program.

Intuitively, a solution maps each type variable to those types that transitively flow into them.

This intuitive notion is captured formally in Figure 12. The judgment S ⊨ 𝜏 ⊑ 𝛼 expresses that a

solution S satisfies a specific constraint 𝜏 ⊑ 𝛼 . Rule Sub indicates that a solution satisfies a ground

type constraint 𝜌 ⊑ 𝛼 if the solution maps the type variable 𝛼 to a set containing the ground type

𝜌 . Moreover, it indicates that a solution satisfies a type variable constraint 𝛽 ⊑ 𝛼 if all types in the

image of 𝛽 are also in the image of 𝛼 . Finally, it indicates that a solution satisfies a complex type

constraint T [𝜏] ⊑ 𝛼 if all types that 𝜏 stands for under this solution are in the image of 𝛼 . Together,

these rules capture the intuition that if a type variable flows into another, then all types that flow

into the first transitively flow into the second. Figure 12 once more adjusts the typing rules for

LangPoly. The presented rules are dual to the constraint rules of Figure 11, in that they determine

whether a solution is valid for the given term, rather than generating constraints for it. While

constraint typing is essential to algorithmically compute a monomorphization, solution typing is

exclusively used to prove various properties about it. As with the constraint rules, the solution

rules are identical to the typing rules, with the exception of the solutions S. Again Construct,

Invoke, Match, and New all involve flow constraints. In these cases, we require that the solution

satisfies the constraint from the flow of the type argument into the type parameter.

Detecting non-monomorphizable programs. Programs involving polymorphic recursion and poly-

morphic packing are not monomorphizable. In order to detect these properties, it is instructive

to reinterpret the constraints as a graph, where vertices correspond to primitive types and type

variables, and edges are labeled with (possibly empty) lists of type constructors. Formally, the edges

E of the monomorphization graph of constraints C are given by the following:

E1 = { 𝛽 T1, ..., Tn→ 𝛼 | (T1 [ ... Tn [𝛽] ] ⊑ 𝛼) ∈ C }
E2 = { Int T1, ..., Tn→ 𝛼 | (T1 [ ... Tn [Int] ] ⊑ 𝛼) ∈ C } (for each primitive type)

E = E1 ∪ E2

As an example, below is the monomorphization graph corresponding to the program featuring

polymorphic packing in Section 2.5.4.
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Int A B

Box

The three edges of the graph arise from the three constraints { A ⊑ B, Box[B] ⊑ A, Int ⊑ A }.
The edge from B to A has a label because of the type constructor in the constraint Box[B] ⊑ A.

Intuitively, a path starting at a primitive node in the graph represents a ground type, where the

type constructors on the edges are applied as the path is followed. We can formalize this as the

following recursive definition:

type(v0 → . . . → vi
T1, ..., Tn→ vi+1) = T1 [ ... Tn [type(v0 → . . . → vi)] ]

type(v) = v

The solution for a particular type variable corresponds to the set of paths from primitive types to

that type variable:

S(𝛼) = { type(p) | p ∈ paths(Int, 𝛼) } (for each primitive type)

Returning to the example, we see that the paths to A include Int → A and Int → A→ B
Box→ A,

whose corresponding types are Int and Box[Int] The set of paths to A is infinite, due to the cycle

between A and B. We can already see that this poses a problem: The infinite set of paths to A
corresponds to an infinite solution S(A) of types (Box[Box[Int]], Box[Box[Box[Int]]], and so on)

flowing into A. We refer to any cycle in the graph containing an edge labeled with a nonempty

constructor list as a growing cycle, which indicates an infinite solution set. A non-growing cycle

can be considered “redundant”: The type represented by a path containing a cycle is the same as

the type represented by the same path with the cycle removed. In the example, if the Box label
were not present, the cycle would not be growing, and the set of types flowing into A would be the

finite set { Int }. The set of monomorphizable programs is the set of programs whose constraints

have a finite solution – those giving rise to a monomorphization graph without a growing cycle.

The four kinds of polymorphic recursion identified in Section 2.5 can all be identified in the same

way, by finding the growing cycle in their monomorphization graphs.

3.3.3 Step 3. Specialization. Monomorphization is a whole-program translation of types and terms.

We define it with regard to a solution S, which maps type variables 𝛼 to sets of ground types 𝜌 . This

set directly specifies the monomorphic variants of functions, types, constructors, and methods.

Figure 13 defines the translation of types with respect to a solution S. For every polymorphic

function in Δ, we create a number of monomorphic functions: one for each ground type 𝜌 in S(𝛼).
The name of the function is f𝜌 and we obtain its type by substituting 𝜌 for 𝛼 in the parameter and

return types. Similarly, for every polymorphic type, based on the solution at the type variable 𝛼0,

we generate a specialized type with the name T𝜌 . The definition makes use of a translation J 𝜏 K on
ground types, which consistently translates type applications such as T [𝜌] to names T𝜌 . As with
functions, for polymorphic constructors and methods, we create a number of monomorphic ones,

based on the solution at the type variable 𝛼1.
3
It is crucial that we create variants for all ground

types that we might need at runtime. While the translation is defined for any solution S, there are
additional requirements when we want to guarantee that it produces a well-typed program.

Figure 13 also defines the translation of programs and terms with regard to solution S. In accor-

dance with the translation of function types, for every polymorphic top-level function definition

3
The monomorphization of enums may result in multiple constructors of the same name but of different types. This poses

no problem in practice, as equally named constructors for different types can be distinguished by fully qualifying them.
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Constraint Collection Σ | Δ | Γ ⊢ t : 𝜏 ⇒ C

Σ | Δ | Γ ⊢ t0 : 𝜏0 ⇒ C0 Σ | Δ | Γ, x0 : 𝜏0 ⊢ t : 𝜏 ⇒ C

Σ | Δ | Γ ⊢ let x0 = t0; t : 𝜏 ⇒ C0 ∪ C
[Let]

enum T [𝛼0] { c[𝛼1] (𝜏1), ... } ∈ Σ Γ(x1) = 𝜏1 [𝛼0 ↦→ 𝜏0, 𝛼1 ↦→ 𝜏]
Σ | Δ | Γ ⊢ c[𝜏] (x1) : T [𝜏0] ⇒ { 𝜏 ⊑ 𝛼1}

[Construct]

enum T [𝛼0] { c[𝛼1] (𝜏1), ... } ∈ Σ Γ(x0) = T [𝜏0]
Σ | Δ | Γ, 𝛼, x : 𝜏1 [𝛼0 ↦→ 𝜏0, 𝛼1 ↦→ 𝛼] ⊢ t : 𝜏 ⇒ C1 ...

Σ | Δ | Γ ⊢ x0 match T [𝜏0] { c[𝛼] (x) ⇒ t, ... } : 𝜏 ⇒ { 𝛼1 ⊑ 𝛼 } ∪ C1 ∪ ...
[Match]

trait T [𝛼0] { m[𝛼1] (𝜏1) : 𝜏2, ... } ∈ Σ
Σ | Δ | Γ, 𝛼, x : 𝜏1 [𝛼0 ↦→ 𝜏0, 𝛼1 ↦→ 𝛼] ⊢ t : 𝜏2 [𝛼0 ↦→ 𝜏0, 𝛼1 ↦→ 𝛼] ⇒ C1 ...

Σ | Δ | Γ ⊢ new T [𝜏0] { m[𝛼] (x) ⇒ t, ... } : T [𝜏0] ⇒ { 𝛼1 ⊑ 𝛼 } ∪ C1 ∪ ...
[New]

trait T [𝛼0] { m[𝛼1] (𝜏1) : 𝜏2, ... } ∈ Σ Γ(x0) = T [𝜏0] Γ(x1) = 𝜏1 [𝛼0 ↦→ 𝜏0, 𝛼1 ↦→ 𝜏]
Σ | Δ | Γ ⊢ x0 .m[𝜏] (x1) : 𝜏2 [𝛼0 ↦→ 𝜏0, 𝛼1 ↦→ 𝜏] ⇒ { 𝜏 ⊑ 𝛼1 }

[Invoke]

Fig. 11. Selected typing rules for LangPoly, extended with constraint collection.

and each 𝜌 in S(𝛼), we create one monomorphic variant. We do so by first substituting 𝜌 for 𝛼 in

the parameter type 𝜏 and the function body t, and then monomorphizing the result.

The translation of terms is only defined on terms that do not contain free type variables, a pre-

condition that will be enforced separately. In the translation of calls, constructors, and invocations,

the type argument must be a ground type 𝜌 . We translate them to using the appropriate names f𝜌 ,
c𝜌 , and m𝜌 respectively. Furthermore, in accordance with the translation of signatures, we create

clauses in matches and methods in objects for each ground type 𝜌 in the solution set S(𝛼1). For
brevity we only display a single clause and method in the source term. Each of them maps to

a set of clauses and methods in the target term. Here, the type variable 𝛼1 originates from the

corresponding constructor or method signature. This ensures that the set of term-level clauses

and methods matches the monomorphically declared type. We translate the right-hand sides of

matches and methods after substituting 𝜌 for 𝛼 , which is important to ensure that the term under

translation continues to have no free type variables. It also establishes the right lexical scoping for

nested definitions. In all other cases, we simply recurse into subterms or have reached a base case.

While the given procedure specifies some monomorphization, we have not yet shown whether

the translation is total, produces well-typed programs, and whether the target programs behave

the same as the source. We demonstrate these properties in the following section.

3.4 Theorems
Monomorphization translates programs from our polymorphic source language LangPoly to our

monomorphic target language LangMono. In the remainder of this section, we present theorems

about both languages and the translation between them. The full proofs can be found in the

appendix, which we submit as supplementary material.

3.4.1 Type Preservation. Our monomorphization procedure preserves types, which we show by

following the three steps explained above. The proof has the following high-level structure:

(1) We relate constraint collection and solutions in the type system of LangPoly (Theorem 3.2).
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Constraint Satisfaction S ⊨ 𝜏 ⊑ 𝛼

S∗ (𝜏) ⊆ S(𝛼)
S ⊨ 𝜏 ⊑ 𝛼

[Sub]

S∗ (𝛼) = S(𝛼)
S∗ (Bool) = { Bool }
S∗ (T [𝜏]) = { T [𝜌] | 𝜌 ∈ S∗ (𝜏) }

Solution Typing Σ | Δ | Γ ⊢ t : 𝜏 ⇐ S

Σ | Δ | Γ ⊢ t0 : 𝜏0 ⇐ S Σ | Δ | Γ, x0 : 𝜏0 ⊢ t : 𝜏 ⇐ S

Σ | Δ | Γ ⊢ let x0 = t0; t : 𝜏 ⇐ S
[Let]

enum T [𝛼0] { c[𝛼1] (𝜏1), ... } ∈ Σ Γ(x1) = 𝜏1 [𝛼0 ↦→ 𝜏0, 𝛼1 ↦→ 𝜏] S ⊨ 𝜏 ⊑ 𝛼1

Σ | Δ | Γ ⊢ c[𝜏] (x1) : T [𝜏0] ⇐ S
[Construct]

enum T [𝛼0] { c[𝛼1] (𝜏1), ... } ∈ Σ Γ(x0) = T [𝜏0]
Σ | Δ | Γ, 𝛼, x : 𝜏1 [𝛼0 ↦→ 𝜏0, 𝛼1 ↦→ 𝛼] ⊢ t : 𝜏 ⇐ S S ⊨ 𝛼1 ⊑ 𝛼 ...

Σ | Δ | Γ ⊢ x0 match T [𝜏0] { c[𝛼] (x) ⇒ t, ... } : 𝜏 ⇐ S
[Match]

trait T [𝛼0] { m[𝛼1] (𝜏1) : 𝜏2, ... } ∈ Σ

Σ | Δ | Γ, 𝛼, x : 𝜏1 [𝛼0 ↦→ 𝜏0, 𝛼1 ↦→ 𝛼] ⊢ t : 𝜏2 [𝛼0 ↦→ 𝜏0, 𝛼1 ↦→ 𝛼] ⇐ S S ⊨ 𝛼1 ⊑ 𝛼 ...

Σ | Δ | Γ ⊢ new T [𝜏0] { m[𝛼] (x) ⇒ t, ... } : T [𝜏0] ⇐ S
[New]

trait T [𝛼0] { m[𝛼1] (𝜏1) : 𝜏2, ... } ∈ Σ

Γ(x0) = T [𝜏0] Γ(x1) = 𝜏1 [𝛼0 ↦→ 𝜏0, 𝛼1 ↦→ 𝜏] S ⊨ 𝜏 ⊑ 𝛼1

Σ | Δ | Γ ⊢ x0 .m[𝜏] (x1) : 𝜏2 [𝛼0 ↦→ 𝜏0, 𝛼1 ↦→ 𝜏] ⇐ S
[Invoke]

Fig. 12. Selected typing rules in solution for LangPoly.

(2) We relate solutions in LangPoly to the specialization in LangMono (Theorem 3.4).

As a corollary of Theorems 3.2 and 3.4, we obtain type preservation:

Corollary 3.1 (Type Preservation).

When Σ | Δ ⊢ P : Δ ⇒ C and S ⊨ C, then J Σ KS | J Δ KS ⊢ J P KS : J Δ KS .

Recall that in the first step of monomorphization, we gather C following the rules of Figure 11.

If we find a solution that satisfies all constraints, expressed as S ⊨ C, then we can annotate the

program with proofs that the solution satisfies all individual constraints where they are emitted,

following the rules of Figure 12.

Theorem 3.2. When Σ | Δ ⊢ P : Δ ⇒ C and S ⊨ C, then Σ | Δ ⊢ P : Δ ⇐ S .

Proof. By considering function definitions individually, realizing that when S ⊨ C1 ∪ C2 then

S ⊨ C1 and S ⊨ C2, and using Lemma 3.3. □

To this end, we use the following lemma that goes over terms and annotates them.

Lemma 3.3. When Σ | Δ | Γ ⊢ t : 𝜏 ⇒ C and S ⊨ C, then Σ | Δ | Γ ⊢ t : 𝜏 ⇐ S .
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Monomorphization of Function Signatures

J f : ∀ 𝛼 . 𝜏1 → 𝜏2KS = f𝜌 : (J 𝜏1 [𝛼 ↦→ 𝜌] K → J 𝜏2 [𝛼 ↦→ 𝜌] K), ...
for each 𝜌 ∈ S(𝛼)

Monomorphization of Type Declarations

J enum T [𝛼0] { c[𝛼1] (𝜏1) } KS = enum T𝜌 { J c[𝛼1] (𝜏1 [𝛼0 ↦→ 𝜌]) KS }, ...
for each 𝜌 ∈ S(𝛼0)

J c[𝛼1] (𝜏1) KS = c𝜌 (J 𝜏1 [𝛼1 ↦→ 𝜌] K), ...
for each 𝜌 ∈ S(𝛼1)

J trait T [𝛼0] { m[𝛼1] (𝜏1) : 𝜏2 } KS = trait T𝜌 { J m[𝛼1] (𝜏1 [𝛼0 ↦→ 𝜌]) : 𝜏2 [𝛼0 ↦→ 𝜌] KS}, ...
for each 𝜌 ∈ S(𝛼0)

J m[𝛼1] (𝜏1) : 𝜏2 KS = m𝜌 (J 𝜏1 [𝛼1 ↦→ 𝜌] K) : J 𝜏2 [𝛼1 ↦→ 𝜌] K, ...
for each 𝜌 ∈ S(𝛼1)

Monomorphization of Programs

J f ↦→ { [𝛼] (x : 𝜏) ⇒ t }KS = f𝜌 ↦→ { (x : J 𝜏 [𝛼 ↦→ 𝜌] K) ⇒ J t [𝛼 ↦→ 𝜌] KS] }, ...
for each 𝜌 ∈ S(𝛼)

Monomorphization of Terms

J true KS = true
J x KS = x
J let x0 = t0; t KS = let x0 = J t0 KS ; J t KS
J f [𝜌] (x1) KS = f𝜌 (x1)
J c[𝜌] (x1) KS = c𝜌 (x1)
J x0 match T [𝜌0] { c[𝛼] (x) ⇒ t } KS = x0 match T𝜌0

{ c𝜌 (x) ⇒ J t [𝛼 ↦→ 𝜌] KS, ...}
for each 𝜌 ∈ S(𝛼1) where enum T [𝛼0] { c[𝛼1] (𝜏1) } ∈ Σ

J new T [𝜌0] { m[𝛼] (x) ⇒ t } KS = new T𝜌0
{ m𝜌 (x) ⇒ J t [𝛼 ↦→ 𝜌] KS, ... }

for each 𝜌 ∈ S(𝛼1) where trait T [𝛼0] { m[𝛼1] (𝜏1) : 𝜏2 } ∈ Σ
J x0 .m[𝜌] (x1) KS = x0 .m𝜌 (x1)

Fig. 13. Monomorphization.

Proof. By induction over the structure of terms. □

Given that the LangPoly program is well-typed under a solution, we then proceed to elaborate it

into a LangMono program. This step always succeeds and preserves types:

Theorem 3.4. When Σ | Δ ⊢ P : Δ ⇐ S , then J Σ KS | J Δ KS ⊢ J P KS : J Δ KS .

Proof. By considering each function definition separately and using Lemma 3.5. □

The key to this proof is the following lemma of well-typedness of translated terms. An important

assumption is that the term does not contain free type variables, which follows from Γ not containing
type variables and well-formedness of terms and types.

Lemma 3.5. When Σ | Δ | Γ ⊢ t : 𝜌 ⇐ S and ftv(Γ) = ∅, then J Σ KS | J Δ KS | Γ ⊢ J t KS : 𝜌 .

Proof. By induction over the size of terms. □

Induction is over the size of terms and not over terms, because in our translation we substitute

ground types for type variables before recursively translating the result. Substitution does not
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change the size of the term. Moreover, we use the following lemma of well-typedness under a

solution after substitution.

Lemma 3.6 (Substitution). When Σ | Δ | Γ, 𝛼, Γ′ ⊢ t : 𝜏0 ⇐ S and 𝜌 ∈ S(𝛼),
then Σ | Δ | Γ, Γ′ [𝛼 ↦→ 𝜌] ⊢ t [𝛼 ↦→ 𝜌] : 𝜏0 [𝛼 ↦→ 𝜌] ⇐ S .

Proof. By induction over the typing derivation. Let us consider case Construct to illustrate

how this lemma ensures that the solution correctly captures the flow of types into type variables.

Consider the case where a constructor is applied to the type variable we are substituting for (that

is 𝜏 = 𝛼). Our goal is to show that ... ⊢ c[𝛼] (x1) [𝛼 ↦→ 𝜌] : T [𝛼 ↦→ 𝜌] ⇐ S , which simplifies

to ... ⊢ c[𝜌] (x1) : T ⇐ S . In order to invoke Construct, we need to prove S ⊨ 𝜌 ⊑ 𝛼1.

Inversion on the typing derivation, only gives us S ⊨ 𝛼 ⊑ 𝛼1. However, inversion on it in turn

gives us S(𝛼) ⊆ S(𝛼1), which we can combine with the premise 𝜌 ∈ S(𝛼) to obtain 𝜌 ∈ S(𝛼1),
and by definition S ⊨ 𝜌 ⊑ 𝛼1. □

3.4.2 Semantics Preservation. The semantics of both, our source language LangPoly and our target

language LangMono are defined in terms of abstract machines (Figures 7 and 10). For both languages

we have the usual theorems of progress and preservation. To state those, we extend typing to

machine states, written M ok.

Theorem 3.7 (Progress). When M ok, then either M is in a final state or M → M′.

Proof. By case analysis of the typing judgment on the term in M . □

Theorem 3.8 (Preservation). When M ok and M → M′, then M′ ok.

Proof. By case analysis of the stepping relation. □

The proofs for LangPoly and LangMono are very similar. The difference lies in the extra handling of

substitutions of type variables for LangPoly. Moreover, our polymorphic source language LangPoly
has a stronger property of preservation: we extend well-typedness under solutions to machine

states, writtenM ⇐ S ok and prove that it is preserved through steps. This theorem expresses that

the solution completely captures the flow of types into type variables during execution. It crucially

relies on Lemma 3.6, where we substitute ground types for type variables.

Theorem 3.9. When M ⇐ S ok and M → M′, then M′ ⇐ S ok.

Proof. By case analysis of the typing judgment on the term in M . □

The proof is identical in structure to the proof of Theorem 3.8 for LangPoly.
Finally, we extend monomorphization to machine states and prove that monomorphization with

regard to a solution S distributes over steps, given that the source machine was well-typed under S.

Theorem 3.10. When M ⇐ S ok and M → M′, then J M KS → J M′ KS .

Monomorphization preserves semantics step-for-step. From this it easily follows that when a source

machine stops with a final result after a number of steps, then the translated machine stops after

the same number of steps with the same final result.

Corollary 3.11 (Semantics Preservation).

When M ⇐ S ok and M →n ⟨v • E P ⟩, then J M KS →n ⟨ J v KS • J E KS J P KS ⟩.

In addition to these theoretical results, in the next section, we present our implementation.
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4 Implementation
To assess the practical feasibility of our approach, we have implemented the monomorphization

algorithm for a superset of LangPoly. We provide it in the supplementary material as a JavaScript

application with an HTML interface. The core of the implementation generally follows our

formalization: First, we gather constraints, following the rules in Figure 11. Then, we simplify

these constraints and check for monomorphizability via the procedure outlined in Section 3.3.2.

If monomorphizable, we compute their solution as their transitive closure. Finally, we perform

specialization using the simplified constraints following Figure 13. We now highlight some features

that our implementation has but the formalization in Section 3 does not.

4.1 Syntactic Extensions
In our implementation, functions, constructors, and methods are multi-arity and thus can take

zero or more arguments. Each of those arguments can be an arbitrary expression and does not

have to be a variable. We allow for local function definitions that close over variables in scope,

instead of only top-level function definitions. All of these are trivial extensions that we omit from

the formalization for clarity of presentation and to simplify our proofs.

4.2 Multiple Type Parameters
Themost involved extension in our implementation is that type declarations, functions, constructors,

and methods can bind multiple type parameters. We could naïvely handle this by tracking each

type variable independently and monomorphizing each structure over the Cartesian product of

the sets of types flowing into its type parameters. However, doing so potentially creates a large

number of unused copies, whose combination of type arguments is never realized in the program.

For example, if a function def foo[A, B]() in our polymorphic source language is only called as

foo[Int, String]() and foo[Bool, Float](), the specializations def foo_Int_Float() and
def foo_Bool_String() in our monomorphic target language clearly are unused. To overcome

this problem, we instead associate whole vectors of type parameters, in this example [A, B], with
a single monomorphization variable. We then track the flow of vectors, vector components, and

monomorphization variables. This prevents the creation of unused copies in those cases.

5 Related Work
While monomorphization is an important implementation technique, few formalizations of it exist.

Griesemer et al. [2020] present a design for generics for the real-world language Go, where

monomorphization to Featherweight Go (FG) is the implementation technique they propose for their

core calculus Featherweight Generic Go (FGG). Like us, they have formalized monomorphization,

and proven that it preserves typing and semantics. Their core calculus FGG, being based on Go,

covers a different design space than our language LangPoly. FGG features structural subtyping,

dynamic type assertions, and top-level instances, while LangPoly features data and interface types,

existentials, and local anonymous instances. Algorithmically, our technique is different from theirs.

We formulate our algorithm as a total constraint generation phase that tracks the flow of types

through type variables, a partial constraint solving phase, and a total monomorphization phase. In

contrast, they perform a single fixpoint computation as part of their type and instance collection

phase. The instance collection phase in itself is partial and non-monomorphizability is detected

with a mutually defined nomono predicate. In our view, these differences in goal, language, and

algorithm make our technique much easier to understand, implement, and prove correct.
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5.1 Implementation of Monomorphization
Monomorphization is a common technique in the compilation of ML-family languages. Benton

et al. [1998] describe a compilation of SML to Java Bytecode, involving the “radical” decision to

monomorphize functions. The MLton
4
compiler monomorphizes in a compilation to machine

code. Tolmach and Oliva [1998] use monomorphization when compiling ML to Ada. In these cases,

monomorphization is made simpler by SML’s lack of support for polymorphic recursion, higher-rank

types, and existential types. In a richer language, Tanaka et al. [2018] use monomorphization in a

plugin for generating C code fromCoq. However, this implementation also does not handle first-class

polymorphism or polymorphic recursion. Languages such as Rust
5
and C++ [Stroustrup 2013] make

use of monomorphization, but fall back to boxing and dynamic dispatch in the case of existential

types. An alternative to monomorphization is type erasure, which is used in compiling Java [Bracha

et al. 1998]. Rather than specializing generic functions and structures, an erasure transformation

removes all polymorphic information from them, resulting in monomorphic code. While type

erasure has the advantage of avoiding code duplication, it suffers from performance penalties. Of

course, erasure side-steps the issues of first-class polymorphism and polymorphic recursion, as

there is no need to determine the set of types at which a function may be applied. JIT compilation

allows for a middle-of-the-road approach, where monomorphization can be performed as needed at

compile-time for primitive types, while code is shared for reference types. This technique, described

by Kennedy and Syme [2001] for the .NET CLR, reduces the duplication of full compile-time

monomorphization, while incurring some runtime cost for runtime monomorphization.

5.2 Algebraic Subtyping
Our approach is loosely inspired by recent work on type inference for algebraic subtyping [Dolan

2017; Dolan and Mycroft 2017; Parreaux 2020]. Unlike unification-based traditional Hindley-Milner

type inference [Hindley 1969; Milner 1978] which gathers equality constraints, algebraic subtyping
collects inequalities between types. Intuitively, these inequalities can be read as a flow of types

through unification variables. This notion of flow cannot only give rise to very precise structural

types [Binder et al. 2022], but also be used to improve type-error messages [Bhanuka et al. 2023]. In

the present paper, our type-based flow analysis uses a similar intuition. However, while algebraic

subtyping is interested in the flow through unification variables, we are interested in a more

coarse-grained flow through type abstractions.

6 Conclusion
Monomorphization is a common technique for implementing parametric polymorphism, yet little

research literature covers it. We have presented a distillation of monomorphization to its simple

essence, the flow of types into type variables. Our technique supports higher-rank types and

existential types—features that intuitively seem impossible to monomorphize. Our presentation has

allowed us to identify four kinds of polymorphic recursion, where monomorphization is not possible.

One of these, polymorphic packing, is a previously unidentified challenge. We have formalized our

technique for transforming programs from a polymorphic nominal type system to a monomorphic

one, and proven that our transformation preserves types and semantics, and we have implemented

it in a prototype with several extensions. We believe that our work provides an elegant model for

monomorphization, a step toward understanding the true limits of monomorphization. In the future,

it would be interesting to study a translation of SystemF to our polymorphic source language, as

well as a translation of our monomorphic target language to STLC with records.

4
http://mlton.org/Monomorphise

5
https://blog.rust-lang.org/2015/05/11/traits.html
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7 Data-Availability Statement
We have implemented a prototype of our monomorphization technique, as described in Section 4.

The implementation is a JavaScript application with an HTML interface. It includes the example

programs for reproduction of results and allows custom input for reuse [Lutze et al. 2025].
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