
Unpublished Draft

Revisiting the Cake Pattern:
Scaling “Scalable Component Abstractions”

Paolo G. Giarrusso Jonathan Immanuel Brachthäuser
University of Tübingen, Germany

Abstract
The cake pattern was designed to support modular devel-
opment combining mixins with ML modules, but it is criti-
cized because mixins are not sufficiently isolated from each
other’s implementation. Indeed, as discussed by Gabriel, his-
torically mixins were not designed to enforce isolation, but
to support separating intrinsically orthogonal concepts in co-
operative development scenarios.

We start investigating the issue and clarify which scenar-
ios the cake pattern does succesfully apply to. We compare
the cake pattern with an encoding of (recursive) hierarchical
modules based on object composition instead of inheritance,
that support fully separate modular development at the cost
of more boilerplate.

We also suggest one could support separate modular de-
velopment without additional boilerplate by combining the
cake pattern with private implementation inheritance.

1. Introduction
Modularity helps to write and maintain complex codebases.
One can use both incremental modular development (IMD)
to develop and evolve new modules on top of existing ones,
and separate modular development (SMD) to develop and
evolve different modules in parallel once their interfaces
have been established [5]. To fully enable separate modu-
lar development, a module system should support separate
compilation [1], that is it should ensure that module link-
ing succeeds whenever each module implementation type-
checks against its interface (and implementations are avail-
able for each interface). Without this guarantee, sometimes
it is necessary to coordinate evolution of different modules
together. This coordination can be hard or impossible if dif-

[Copyright notice will appear here once ’preprint’ option is removed.]

ferent modules are maintained by independent developers, or
simply if the codebase exceeds some complexity. Arguably,
modularization then only allows a partial separation of con-
cerns. However, this can still be useful for modules that are
jointly developed and evolved, a somewhat restrictive but
useful scenario we call coordinated modular development
(CMD), for which mixins were designed [3].

Scala was designed to have good support for modular
development by combining ML modules and mixins using
what is now called the cake pattern [7, 8]; however, ex-
perience with the cake pattern revealed significant issues
originally not anticipated. In fact, its biggest case study is
the Scala compiler Scalac; but because of the experience,
Scalac’s rewrite Dotty is written minimizing the use of mix-
ins.1 Scala’s type system is being formalized and its proper-
ties clarified, so we believe it is appropriate to also study in
more detail how well Scala supports modular development,
also using newer results on mixin modules [9].

In this short, paper we sketch the following contributions.

• We illustrate that the Scala cake pattern [7] does not sup-
port fully either SMD or IMD because adding members
to a dependency can introduce errors at composition time.
• We point out that the cake pattern as-is can still be use-

ful adequate for coordinated modular development, the
scenario for which mixins were originally developed in
object-oriented languages [3].
• We highlight that variants of the original pattern address

some of these problems (at the cost of some boilerplate)
and encode a subset of hierarchical ML modules while
still supporting recursive linking.
• We point out that while mixin modules, in general, can

support SMD, in an object-oriented context this would at
least require extending Scala with a form of private inher-
itance, together with other typical constructs of module
systems such as renamings and selective imports.

Throughout the paper, we ignore Java-style visibility con-
trol through private and protected , since it is less expressive

1 https://groups.google.com/d/msg/scala-language/
WcnHXjAJaKg/i1XPUCpePrIJ.

Unpublished draft accompanying a talk at Scala Symposium 2016 1 2016/10/24

https://groups.google.com/d/msg/scala-language/WcnHXjAJaKg/i1XPUCpePrIJ
https://groups.google.com/d/msg/scala-language/WcnHXjAJaKg/i1XPUCpePrIJ


trait Trees {type Exp}
trait Eval { self : Trees with Normalize ⇒

type Val

val eval : Exp ⇒ Val

val normalizingEval : Exp ⇒ Val =

exp ⇒ eval(normalize(exp))

}
trait Normalize { self : Trees with Eval ⇒

val reify : Val ⇒ Exp

val normalize : Exp ⇒ Exp = exp ⇒ reify(eval(exp))

}

trait TreesImpl extends Trees { ...}
trait EvalImpl extends Eval { ...}
trait NormalizeImpl extends Normalize { ...}

class Interpreter extends TreesImpl with EvalImpl

with NormalizeImpl

object interpreter extends Interpreter

Figure 1. De- and recomposition into recursive modules
using the cake pattern. Dependencies highlighted in grey .

than pure ML-style mechanisms and introduces further com-
plications.

Some of these points are partially known to experts or
touched upon in part outside the Scala literature [9], but not
discussed in the academic literature on Scala, and we believe
further research on them is needed.

2. Modularization by Inheritance: The Cake
Pattern

To briefly illustrate the cake pattern, we use it to decom-
pose a fictive normalizing interpreter into the three (re-
cursive) modules Trees, Eval and Normalize (Figure 1).
Following the cake pattern, dependencies to other mod-
ules are expressed using self-type annotations (such as
self : Trees with Eval ⇒) and mixin composition is used
to compose the slices and resolve the mutual dependencies.

The abstract type Exp is shared across all modules and
the type Val is shared between Eval and Normalize. For in-
stance, normalize only typechecks because the typechecker
identifies Normalize.Val and Eval.Val thanks to the self-
type annotations.

2.1 Limitations of the cake pattern
The cake pattern derives most of its modularity attributes
from using mixin composition (as opposed to object compo-
sition), which is a form of (multiple) inheritance.

Using the cake pattern, composition of slices only re-
quires a minimal amount of boilerplate. No explicit wiring
of the type and value members of the involved components
is necessary.

However, in Scala, module implementations are only hid-
den from each other in the modules themselves, but neither
in their composition nor to their clients. For instance, any
code in the body of interpreter in Figure 1 would unavoid-
ably see the concrete definitions for types Exp and Val and
any additional methods from the implementations, unlike in
MixML [9] and Backpack [5], even if those concrete defi-
nitions are not intended to be part of the public API of the
module. Worse, a module might typecheck or not depending
on hidden implementation details of its dependencies, com-
plicating IMD and SMD. Hence:

• Implementation details and dependencies to other mod-
ules are not hidden from clients; importing a module re-
exports it.
• Linking separately-developed well-typed modules can

lead to linking errors, at least due to multiple possible
variants of name conflicts. Such conflicts can be avoided
for CMD or even in IMD, but prevent SMD.

Access modifiers can alleviate some of these problems, but
only in a CMD scenario, since they must be added to indi-
vidual modules and not at combination time.

Moreover, using self-type annotations the cake pattern
forces the use of inheritance rather than object composi-
tion. This hinders having multiple instantiations of modules,
which can be especially important if they have internal state.

2.2 Tradeoffs
When modules are designed together, are expected to coe-
volve and need to share implementation details the cake pat-
tern can be appropriate. While using self-type annotations
with interface traits to communicate dependencies allows
one to (statically) recompose a system from different imple-
mentation slices, it entails tight coupling between the slices.

3. Modularization by Object Composition:
Encoding Hierarchical Modules

As always in object-oriented programming, if loose coupling
is desired, it might be advisable to use object composition
instead of class composition (via inheritance) [6]. At the
same time, it is folklore that abstract members (or other
forms of parametrization such as constructor arguments) can
be used to express dependencies to other modules [2].

In this tradition, Figure 2 shows an alternative to Fig-
ure 1 using an encoding of hierarchical modules instead of
the cake pattern. A similar encoding was sketched by Oder-
sky and Zenger [7], but without discussing the modularity
tradeoffs. To express sharing and resolve recursive depen-
dencies on the term level, laziness (or alternatively mutable
state) is sufficient. However, as soon as abstract type mem-
bers are shared across different modules, sharing constraints
have to be introduced to allow the modules to collaborate.
Since the type t .Exp is shared between module Eval and
module Normalize, in our example, sharing constraints of

Unpublished draft accompanying a talk at Scala Symposium 2016 2 2016/10/24



trait Eval {outer ⇒
val t : Trees

val n : Normalize {val t : outer .t .type }
type Val

val eval : t .Exp ⇒ Val

val normalizingEval : t .Exp ⇒ Val =

exp ⇒ eval(n.normalize(exp))

}
trait Normalize {outer ⇒

val t : Trees

val e : Eval {val t : outer .t .type }
val reify : e.Val ⇒ t .Exp

val normalize : t .Exp ⇒ t .Exp =

exp ⇒ reify(e.eval(exp))

}
class Interpreter {outer ⇒

object t extends TreesImpl

object e extends EvalImpl {
val t = outer .t ;val n = outer .n }

object n extends NormalizeImpl {
val t = outer .t ;val e = outer .e }

}
object interpreter extends Interpreter

Figure 2. De- and recomposition into recursive modules us-
ing object composition and sharing constraints. Dependen-
cies are highlighted in grey .

the shape {val t : outer .t .type } are necessary to assert
that both dependencies use the very same instance of Trees.

Sharing of abstract type members can be performed on
two different levels of granularity. First, we might intro-
duce a type binding (type T = self .T ) for every type
that is shared between the modules. Second, as in the ex-
ample, we might introduce a type refinement to a singleton
type (val dep : self .type) for every module that declares
types which are shared between the dependencies. The first
is more verbose while the latter is more restrictive as it im-
mediately implies the necessary wiring of the modules. This
is reminiscent of the granularity of required interfaces in the
cake pattern where one can either use self-type annotations
to depend on a whole interface or abstract members for more
fine-grained control.

3.1 Limitations of hierarchical modules
The encoding of hierarchical modules inherits most of its
attributes from using object composition.

Wiring boilerplate The major advantage of mixin modules
is automatic wiring of abstract and concrete type and value
members. In contrast, to compose hierarchical modules we
have to:

1. manually wire the dependent modules, that is, for every
module provide references to its dependencies. For n
modules, this amounts to Θ(n2) assignments. The wiring
is local to the composing module and has to be performed
once per composition.

2. manually constrain the involved types of dependent mod-
ules, that is, for every module and every shared abstract
type specify a sharing constraint. For n modules and
m abstract types, this amounts to Θ(mn) sharing con-
straints. The sharing constraints are local to the corre-
sponding module definition and do not require any ad-
ditional boilerplate on composition. When using single-
ton types for sharing constraints this amounts Θ(n2) type
bindings.

When refining dependencies in subclasses of a module
(e.g. the implementation of the module) sharing constraints
have to be repeated. Just like self-type annotations have to
be repeated when inheriting from cake slice.

Manual reexporting As always when using delegation
over inheritance reexporting members has to be performed
manually [4]. This is an old problem and, for instance, many
generative solutions like macros or IDE support exist.

Privacy While protected state and methods are automati-
cally shared in a flat cake, additional code is required in the
nested cake solution to exhibit and share members that are
not part of the public interface.

3.2 Tradeoffs
The encoding of hierarchical modules supports IMD and
SMD at the cost of wiring verbosity and some restrictions
in CMD. Yet, since the encoding is embedded in Scala as a
host language, it interacts with other (object oriented) fea-
tures like late-binding and overriding in specialized mod-
ules. This aspect goes beyond the expressivity of the ML
module system or of MixML.

4. Conclusion, Discussion and Future Work
We discussed the complementary strengths of the cake pat-
tern and the encoding of hierarchical modules and clarified
when the cake pattern is still appropriate. In this section, we
sketch possible hybrids and suggest future work.

4.1 Combining the two modularization strategies
Using self-type annotations forces different cake slices to be
mixed together. But sometimes, even if we use an encoding
of hierarchical modules, we can still use mixins at compo-
sition time to reduce the amount of code needed to perform
the wiring, as in the following examples:

object hybridComposition1 {
object evalCake extends TreesImpl with EvalImpl {

val t = this;val n = normalizer }
object normalizer extends NormalizeImpl {

Unpublished draft accompanying a talk at Scala Symposium 2016 3 2016/10/24



val t , e = evalCake }
}
object hybridComposition2 extends TreesImpl

with EvalImpl

with NormalizeImpl {val t , e,n = this}

Note how hybridComposition2 uses mixin compositions
to compose the different implementation slices. The advan-
tage is that, unlike with self-type annotations, here the client
side can choose which composition mechanism to use, and
avoid using mixins whenever composition conflicts arise.
We leave an investigation of this possibility for future work.

4.2 Historical roots
As discussed, the cake pattern has issues with separate mod-
ular development. But it might be unreasonable to expect
otherwise also for important historical and cultural rea-
sons, that relate to the underappreciated divide that Scala
sits across. It is often said that Scala tries to bridge OOP and
FP. But Gabriel [3] might imply that Scala tries to bridge
across incommensurable communities with different goals,
assumptions and technical language, such that even commu-
nication across them is extremely hard. Here we only offer
informed speculation.

In particular, mixins (and more, in general, we believe
many of the aspects that characterize OO languages, such
as inheritance) were invented by a community working on
object-oriented programming systems to support coopera-
tive modular development. Gabriel [3] argues the later com-
munity working on object-oriented programming languages
had incommensurable goals, in particular outlawing bad pro-
grams rather than just supporting good ones. In particular,
the guarantees offered by separate modular development
would have made little sense in the programming systems
community. In this light Scala mixins (as opposed to MixML
mixins) appear to us technically closer to the goals of the
systems community, because they don’t support SMD (even
though, of course, Scala’s type system is a giant step in the
“programming language” direction).

Overall, we conjecture that Scala is not just trying to
bridge across programming language research on object-
oriented and functional languages, which after all are com-
mensurable communities, but also across the incommen-
surable systems and language communities. Moreover, we
conjecture this incommensurability explains some of the
conflicts around Scala.

4.3 Future work
ML modules are subtle and Scala’s variant is no exception.
In this short paper we clarified some issues with Scala’s
modularity support; to conclude, we propose a few issues
to focus future research.

Clarifying encodings of ML modules Odersky et al. [8]
claim νObj can encode ML modules without details. While
examples using ML modules typically translate to Scala, no

complete encoding has been formalized and proved correct,
and a few details are unclear. Combining features from ML
modules with mixins is even trickier: supporting SMD with
the cake pattern would require adding a mixin to a type after
sealing it, but this appears impossible since only instantiated
objects can be “sealed”. Also, linking recursive modules us-
ing aggregation requires setting up a cyclic graph without us-
ing mutable variables (since those cannot be used in types);
using val members can cause issues with initialization or-
der, using object works but seems restrictive, and using
lazy val appears currently robust but is not supported in
Dotty as it appears unsound in general.2 MixML [9] deploys
linear types to express assign-once reference and address a
very similar problem, a significant complication. It’s unclear
to us whether Scala can offer a fully satisfactory solution.

Extending Scala to support SMD Separate modular de-
velopment and mixin modules have been combined in other
systems like MixML [5, 9]. Could we achieve the same by
extending Scala? Could we do that without affecting its core
typesystem? Can we combine SMD with Scala’s additional
OO features missing from MixML, such as implementation
inheritance with open self-recursion?

We conjecture that translating Backpack’s thinning step
would correspond to introducing some variation of C++
private inheritance. E.g., in Figure 1 interpreter should
inherit only privately from TreesImpl but publicly from
Trees, hiding any members of TreesImpl not in Trees.

More generally, one might need integrating other typical
constructs of module systems, such as renamings and selec-
tive imports, and allowing to use them to control private in-
heritance.

Acknowledgments
We’d like to thank Tillmann Rendel, Klaus Ostermann and
Scott Kilpatrick for helpful discussions.

References
[1] L. Cardelli. Program fragments, linking, and modularization.

In POPL, pages 266–277. ACM, 1997.

[2] M. Fowler. Inversion of control containers and the dependency
injection pattern, 2004. URL http://www.martinfowler.
com/articles/injection.html.

[3] R. P. Gabriel. The structure of a programming language revo-
lution. In Onward!, pages 195–214. ACM, 2012.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software (Adobe
Reader). Pearson Education, 1994.

[5] S. Kilpatrick, D. Dreyer, S. Peyton Jones, and S. Marlow. Back-
pack: Retrofitting Haskell with interfaces. In POPL, pages 19–
31. ACM, 2014.

2 As discussed in http://www.scala-lang.org/blog/2016/02/17/
scaling-dot-soundness.html.

Unpublished draft accompanying a talk at Scala Symposium 2016 4 2016/10/24

http://www.martinfowler.com/articles/injection.html
http://www.martinfowler.com/articles/injection.html
http://www.scala-lang.org/blog/2016/02/17/scaling-dot-soundness.html
http://www.scala-lang.org/blog/2016/02/17/scaling-dot-soundness.html


[6] H. Lieberman. Using prototypical objects to implement shared
behavior in object-oriented systems. In OOPSLA, pages 214–
223. ACM, 1986.

[7] M. Odersky and M. Zenger. Scalable component abstractions.
In OOPSLA, pages 41–57. ACM, 2005.

[8] M. Odersky, V. Cremet, C. Röckl, and M. Zenger. A nominal
theory of objects with dependent types. In ECOOP, pages 201–
224. Springer, 2003.

[9] A. Rossberg and D. Dreyer. Mixin’ up the ML module system.
ACM TOPLAS, 35(1):2:1–2:84, 2013.

Unpublished draft accompanying a talk at Scala Symposium 2016 5 2016/10/24


	Introduction
	Modularization by Inheritance: The Cake Pattern
	Limitations of the cake pattern
	Tradeoffs

	Modularization by Object Composition: Encoding Hierarchical Modules
	Limitations of hierarchical modules
	Tradeoffs

	Conclusion, Discussion and Future Work
	Combining the two modularization strategies
	Historical roots
	Future work


