Effects, Capabilities, and Boxes
From Scope-based Reasoning to Type-based Reasoning and Back

Jonathan Immanuel Brachthiuser
University of Tiibingen, Germany

Philipp Schuster

University of Tiibingen, Germany

Edward Lee

University of Waterloo, Canada

Aleksander Boruch-Gruszecki
EPFL, Switzerland

Abstract

Reasoning about the use of external resources is an important aspect of many practical applications.
Effect systems enable tracking such information in types, but at the cost of complicating signatures
of common functions. Capabilities coupled with escape analysis offer safety and natural signatures,
but are often overly coarse grained and restrictive. We present System C, which builds on and
generalizes ideas from type-based escape analysis and demonstrates that capabilities and effects can
be reconciled harmoniously. By assuming that all functions are second class, we can admit natural
signatures for many common programs. By introducing a notion of boxed values, we can lift the
restrictions of second-class values at the cost of needing to track degree-of-impurity information in
types. The system we present is expressive enough to support effect handlers in full capacity. We
practically evaluate System C in an implementation and prove its soundness.

Main Reference Jonathan Immanuel Brachthéduser, Philipp Schuster, Edward Lee, and Aleksander Boruch-Gruszecki.
2022. “Effects, Capabilities, and Boxes: From Scope-based Reasoning to Type-based Reasoning and
Back.” Proceedings of the ACM on Programming Languages 6. OOPSLA (2022): 1-30. https://doi.
org/10.1145/3527320
Comments This is an extended version of the main reference. Compared to the published paper, this report
contains the full appendix (see Appendix A): full operational semantics, details on the soundness
proofs, and a comparison with call-by-push-value (CBPV).

1 Introduction

Programming languages have to provide the ability to communicate with the outside world.
Moreover, programs often need to non-locally interact with other parts of the program, for
instance via mutable state or exceptions. If a program depends on or modifies its context, it
is effectful, otherwise, it is pure. We say that effectful programs use an effect. Unrestricted
or undisciplined use of effects can lead to confusion and bugs [13]. To address this, language
designers have sought to enable programmers to statically and locally reason about the use
of effects.

1.1 Effect Systems and Type-Based Reasoning

Effect systems extend the static guarantees of type systems to additionally track the use of
effects [51, 34, 43, 38]. Typically, this additional information of the effect system (on the left)
is also reflected in the type of functions, which mention the set of effects a function might
use (on the right).

I' s : 7/ {Exc, State } 7 — 7 / { Exc, State }

Based on the types, programmers can use this additional information to reason about
programs. For example, functions with an empty effect set are pure and can be executed

Jonathan Immanuel Brachthauser, Philipp Schuster, Edward Lee, and Aleksander Boruch-Gruszecki. “Effects,
Capabilities, and Boxes”. Technical Report. 2022. University of Tibingen, Germany.

https://doi.org/10.1145/3527320
https://doi.org/10.1145/3527320

Effects, Capabilities, and Boxes

in parallel without causing data races. From a programmer’s perspective, however, effect
systems usually have a number of drawbacks, which inhibit a more widespread adoption.
In particular, by enhancing function types with effects such systems often track too much
information. Types quickly become verbose, difficult to understand, and difficult to reason
about — especially in the presence of effect-polymorphic higher-order functions [55, 48, 9].
Consequently, programmers avoid effect systems and some languages, such as Scala, avoid
adding an effect system.

1.2 Effects as Capabilities and Scope-Based Reasoning

Capabilities offer an alternative way to control the use of effects. In this model, one can use
certain effects only through capabilities [16, 36]. Restricting access to capabilities restricts
effects. A program, such as s below, can only perform effects of capabilities it has access to.
Similarly, the function type in the middle requires the two capabilities as arguments.

I, ex: Exc, st: State s : 7 (T, Exc, State) — 7 ToT

From a language designer’s perspective, capabilities offer an interesting alternative to tradi-
tional effect systems: programmers can reason about effects the same way they reason about
bindings. Additionally, it has been shown that capabilities offer a lightweight alternative to
traditional effect polymorphism: contextual effect polymorphism [9, 41]. Functions can use
effects by closing over capabilities. These are not visible in the type of the function (right
column), simplifying signatures of effect polymorphic higher-order functions [9]. However,
since since closure over capabilities is not visible in a function’s type, it often hinders reasoning
about its purity.

Some capabilities have a limited lifetime, like when modeling checked exceptions, and
should not leave a particular scope. The problem is non-trivial, since leaving a scope can
also occur indirectly via functions that close over capabilities. In an attempt to rule this out
and guarantee effect safety, type-based escape analysis [23, 41] distinguishes between first-
and second-class functions. Capabilities and functions closing over them are second-class.
They can be passed as arguments, but cannot be returned nor stored in data structures or
mutable references. This restriction rules out a large class of programs, which are safe but
not typable. For instance, since second-class functions cannot be returned, currying cannot
be applied.

1.3 Explicit Boxing — From Scope-Based to Type-Based Reasoning and
Back

In this paper, we set out to restore the expressivity of first-class functions and type-based
reasoning about purity, without sacrificing the simplicity of contextual effect polymorphism.

As a starting point, we choose a core language with support for contextual effect polymor-
phism via second class capabilities — System = — [9] and extend it with support for first-class
functions. We require a possible solution to meet the following criteria:

Backwards compatibility. Types assigned by System = should not change in the extension.
This entails that ergonomic advantages of lightweight effect polymorphism remain.
Pay-as-you-go. Only when treating functions in a first-class way, programmers should be
confronted with additional complexity in the involved types.

We present System C, which aims at striking the balance between ergonomics (we offer
the same form of lexical reasoning and contextual effect polymorphism as System =) and

Brachthauser, Schuster, Lee, and Boruch-Gruszecki

expressivity (we additionally allow returning functions which close over capabilities and
support type-based reasoning). Our solution is based on the following design decisions:

Second-class values Following Osvald et al. [41], and like System Z, we distinguish between
functions that can be treated as first-class values, and functions that are second-class (to
highlight this difference, we follow Brachthauser et al. and explicitly refer to second-class
functions as blocks). Thus, we avoid confronting programmers with the ceremony associated
with tracking capabilities in types as much as possible. In particular, blocks can freely close
over capabilities and effectful computations can simply use all capabilities in their lexical
scope, with no wvisible type-level machinery to keep track of either fact.

Capability sets Based on the work by Osvald et al., we annotate each binding in the typing
context with additional information. However, we do not only track whether a bound variable
is first- or second-class, but track precisely over which capabilities it closes. That is, we
augment bindings (e.g., f :© o) in the typing context with capability sets (e.g. C). This
information is only annotated at the binder and is not part of the type. This is important
for ergonomics: the additional information, which is used to guarantee effect safety, is not
visible to users unless explicitly requested.

Boxes While blocks can freely close over capabilities and other blocks, they cannot be
returned from a function or stored in a field. To recover these abilities, System C features
explicit boxing and unboxing language constructs. They are inspired by equally named modal
connectives and by the work of Choudhury and Krishnaswami [12] on comonadic type systems.
Boxing converts a second-class value to a first-class value, reifying the contextual information
annotated on the binder into the boxed value’s type (e.g., f:¢ o box f : cat().
That is, instead of completely preventing first-class values from closing over capabilities, the
capabilities they close over are now faithfully represented in their types. To use a boxed block,
we have to unbox it. We make sure to only perform this operation when the capabilities are
still in scope, which guarantees effect safety (e.g., z: o at C unbox z : o | C). The
reader might find the following analogy helpful:

Conceptually, we treat mentioning capabilities as an effect. In the terminology of
call-by-push-value [30], boxing corresponds to “thunking” and unboxing corresponds
to “forcing” the effect of mentioning capabilities!.

The box and unbox constructs allow programmers to freely move between tracking capabilities
implicitly, via lexical scoping, or explicitly, in the types.

1.4 Contributions and Overview

This paper makes the following contributions:

An example driven introduction to programming in System C, a calculus that recon-
ciles scope-based and type-based reasoning in a language with advanced control effects
(Section 3).

1" A more detailed comparision with call-by-push-value can be found in Section 6.8.

TR 2022

4

Effects, Capabilities, and Boxes

A formal presentation of System C with static and dynamic semantics (Section 4). The
typing context in System C is enhanced with information about block binders, which only
becomes visible in types when explicitly boxing blocks.

A proof of progress and preservation (Theorems 3 and 5), and effect safety (Corollary 9).
A full mechanization of the calculus, as well as proofs of the progress and preservation in
the Coq theorem prover (Section 4.5.4).

An evaluation in terms of an implementation (Section 5) and several small case studies.
This paper is accompanied by an artifact consisting of an interactive demonstration and
Coq proofs, archived under https://doi.org/10.5281/zenodo.5833713.

Furthermore, Section 2 provides an in-depth presentation of the state-of-the-art and motivates
our work. Section 6 offers a comparison with additional lines of related work.

2 Motivation

The motivation behind our work is to design a language that specifically features:
Lexical reasoning. Programmers can determine lexically where an exception / effect is handled.

Effect safety. The type system establishes that all exceptions (all effects) are eventually
handled.

Ergonomics. The verbosity of effect tracking in types is limited to where it is necessary.

First-class functions. It should be possible to return effectful functions.
No prior work that we are aware of meets all of the above criteria. In the remainder of this
section, we will motivate each criterion and point out limitations of existing work. Readers
who want to first learn more about our proposed solution can skip to Section 3 and can come
back if necessary.

2.1 Lexical Reasoning

Operationally, traditional implementations of (control) effects (such as exceptions or the more
general algebraic effects) are dynamically scoped [11]. Counsider, for instance, how exceptions
behave in JavaScript:

function process(path) {(|1])
function abort() { throw("processing aborted") }
try {(12]) eachLine(open(path), line = {(|3]) /+ ../ abort() }) }
catch { msg = /... handle I0 exception, raised by open ...x/ }

}

We define a function process that processes the contents of a file. To do so, it defines a local
function abort that raises an exception, signalling that processing failed. Since opening a
file might throw an exception, we additionally install an exception handler to deal with this
error condition. We then call a higher-order function eachLine with a function argument
which uses abort.

The exception thrown by abort might be conceivably handled at three different source
locations: Either () by the call-site of process, @) by the handler inside process, or @) by
a handler inside of eachLine. Depending on the specific example and use case, all three
are valid choices the programmer could make. Now, what actually happens is that the
exception will be handled by) unless it happens to be handled by @). This is impossible to
know without inspecting the source code of eachLine. Moreover, to propagate the exception

https://doi.org/10.5281/zenodo.5833713

Brachthauser, Schuster, Lee, and Boruch-Gruszecki

to @, we would have to explicitly forward it from @), without accidentally forwarding any
other exceptions. This behavior is common to most languages such as JavaScript, ML, Java,
Ruby, and many more.

The underlying problem is that, traditionally, exceptions are dynamically scoped: the
exception thrown by abort unwinds the call stack and the first catch clause relative to
the dynamic call-site of abort handles it. As explained by Zhang et al. [55], higher-order
functions such as eachLine, make it difficult for programmers to statically reason about
where an exception will be handled. This behavior is not limited to exceptions but also
applies to more general control operators, such as algebraic effect handlers [44].

Capabilities To facilitate reasoning about exception handlers in the presence of higher-order
functions, Zhang et al. [55] argue for a different semantics based on lexical scoping. Recently
lexically scoped exceptions have been generalized to lexically scoped effect handlers [54, 5, 9].
One particular way to obtain lexically scoped effects is to model effects as capabilities [21]
and perform capability passing [9]. Consider the previous example in a hypothetical language
with lexically scoped exceptions in explicit capability-passing style:

function process(path, excl) {
function abort() { excl.throw("processing aborted") }
try { exc2 = eachLine(open(path, exc2), (line, exc3) = { /+. ..#/ abort() }) }
catch { msg = /+. .. handle I0 exception ...x/ }

}

Every exception handler introduces a term-level capability. Each of the three capabilities
(e.g., excl, exc2, exc3) corresponds to one of the previously marked positions where the
exception thrown by abort might be handled. When we want to throw an exception, we have
to use one such capability and the exception will be handled by the handler that introduced it.
In the function argument of eachLine, we call abort, which in turn calls excl.throw(...).
By applying local reasoning it is immediately clear that the exception will be handled at the
call-site of process. Moreover, it is directly possible to throw an exception to one of the
other handlers, simply by using exc2 or exc3. For this to be safe it is necessary (but, as we
will see, not sufficient) that the capabilities are in scope.

2.2 Effect Safety

The purpose of an effect system is to statically guarantee effect safety [38]. In the special case
of exceptions this means that all exceptions are eventually caught. Enriching function types
with effects enables programmers to reason about the presence and absence of particular
effects of interest. However, types inferred by traditional type-and-effect systems can be
verbose and difficult to understand. This is in particular the case for higher-order functions,
where the types not only accurately reflect which effects the function uses, but also which
effects it handles. Consider the following example in Koka [27], a language with a Hindley-
Milner style type system, featuring a row-based effect system, and dynamically scoped effects
and handlers.

fun rethrow(func, prog) {
handle ({ prog() }) except throw(msg) { throw(func(msg)) }
}

The example defines a useful helper function which catches all exceptions in prog and
rethrows them after applying func to the message msg. Koka correctly infers the most

TR 2022

Effects, Capabilities, and Boxes

general type:

forall<a,e> (func: (string) — <excl|e> string, prog: () — <exc,excle> a) — <excle> a

It abstracts over the result type a as well as effects e. The result type tells us that function
rethrow itself uses effect exc and potentially other effects e to return a result of type a.
Inspecting the inferred types of the argument functions sheds some light on how type-and-
effect checking in Koka (and other languages based on row polymorphism) works. There are
two aspects, which we believe are difficult for programmers who are learning the language:

1. Maybe surprisingly, argument func is assigned effect <exc|e>, but why? Since the effect
system is based on row-polymorphism, the effect of func has to unify with the effects of
its calling context. So the effects of func(msg), of the handler body, and of the overall
function have to unify. Operationally this is correct, since func may use exceptions.

2. Even more surprisingly, the type of argument function prog mentions two copies of exc.
Again, operationally this is correct since prog might itself either throw an exception
that is handled by rethrow, or one that is handled at the call-site of rethrow. Allowing
duplicate entries is also necessary for soundness [26, 53].

The function rethrow in Koka is effect polymorphic. This is important because we want to
pass effectful functions to it. Consider the following helper function in Koka, which prepends
the current info string to all thrown exceptions.

fun prependInfo(prog) { rethrow(fun(str) { getInfo() ++ str }, prog) }

It calls rethrow with a function which uses the info effect to express that the current info
depends on the context. Koka infers the following type:

forall<a,e> (prog : () — <exc,exc,infole> a) — <exc,infole> a

The argument to rethrow uses the info effect, which leaks into the inferred type of parameter
prog — the problem of avoiding this issue is known as effect encapsulation [32]. Many
other problems of existing type- and effect systems, accidental capture [55], or effect para-
metricity [54], can be tracked down to the operational semantics of the underlying language.
The above type is correct and most general, but certainly not easy to understand. We
believe, the frequent use of functions with many function parameters can render explicit
polymorphism impractical. This scenario is common in OOP, where almost every method is
higher-order [14].

2.3 Ergonomics

As an alternative to parametric effect polymorphism, second-class values admit a lightweight
form of effect polymorphism. Consider the same function in Effekt, a language with lexical
effect handlers [9]:

def rethrow[A] { func: String = String / {} } { prog: OO = A / {Exc} }: A / {Exc} =
try { prog() } with Exc { def throw(msg) = throw(func(msg)) }

The signature of rethrow is polymorphic in the result type A, but does not abstract over
any effects. No effect variables show up in types nor error messages. Yet, it features effect
polymorphism and guarantees effect safety. This is because effect signatures in Effekt are
relative to the calling context. The parameter func, enclosed in curly braces, denotes a
so-called block — a second-class function. Blocks can use all effects from the context they were
defined in; accordingly, func does not need to explicitly mention any effects in its type — it

Brachthauser, Schuster, Lee, and Boruch-Gruszecki

simply can use them. This form of polymorphism is called contextual effect polymorphism [9].
To illustrate, let us consider the call-site in function prependInfo:

def prependInfol[A] { prog: () = A / {Exc} }: A / {Exc, Info} =
rethrow { str = info() ++ str } { () = prog() }

The signature of prependInfo expresses that it can handle the exception effect used by prog
and itself may use the exception and info effects. Notice how the first argument passed to
rethrow is effectful (it uses info), even though the required type is String = String / {}.
Guided by the types, Effekt translates to System =, a core calculus in explicit capability-
passing style.

def prependinfo[A](prog : Exc = A, exci: Exc, info: Info): A =
rethrow[A]({ str = info() ++ str}, { exco = prog(excz) }, exci)

The function argument closes over capability info, hiding it in its closure. While this leads
to concise signatures, it means we cannot require function parameters to not use certain
effects!

2.4 First-Class Functions

Effect safety for lexically scoped effect handlers means that a capability is only used while
the corresponding handler is on the stack. In other words, capabilities shall not escape their
handler. For example, the following program should be ruled out, since the capability exc
leaks via closure:

try { exc = return (() = exc.throw("Unsound!")) } catch { ... }

Type-based escape analysis [23] can provide this static guarantee. One particular solution is
based on second-class values, which can be passed as arguments, but never be returned [41].
To establish effect safety, capabilities (like exc) need to be second class. But, as we have
seen, functions can close over capabilities, hiding their use. In consequence, existing work
either (a) distinguishes between first-class functions that cannot close over capabilities and
second-class functions that can [41] or (b) treats all functions as second-class [9]. While
many useful programs can still be written with such a restriction, both solutions come with
a severe loss of expressivity.

2.5 The Best of Both Worlds

To summarize, capability-passing establishes lexical scoping between the binding-site of a
capability and its use. Modeling effects as capabilities has multiple advantages. Firstly,
programmers can re-apply their knowledge about variable binding to reason about effects.
Secondly, combining it with a type-system based on second-class values results in a lightweight
form of effect polymorphism, leads to simplified signatures, and avoids problems such as
effect encapsulation. However, prior work imposes severe restrictions on the use of second-
class functions resulting in a significant loss of expressivity. Furthermore, second-class
functions silently close over capabilities, which enables contextual effect polymorphism but
also prevents type-based reasoning about purity. In the following section, we introduce
System C, a language that lifts many of the above mentioned restrictions while preserving all
the advantages of capability passing and second-class values.

TR 2022

Effects, Capabilities, and Boxes

3 Programming with System C

In this section, we will introduce System C and the underlying concepts by example.

3.1 Capabilities

One important aspect of System C is that it uses capabilities for authority control [16, 36, 35].
Operationally, a capability is an ordinary object with effectful methods. Holders of the
capability are entitled to perform the corresponding effects. What makes capabilities special
is that we want to keep track of their use in a program, to indirectly track the use of effects.
To control access to capabilities, our system uses second-class values in the style proposed
by Osvald et al. [41]—both capabilities and functions that close over them are second class.
As we will see, our system allows transitioning back-and-forth between first- and second-class
values. When converting to a first-class value, the (otherwise implicitly) captured capabilities
become visible in its type (and only then). When transitioning back to second class, we use
this information to decide whether the transition should be allowed.

Global capabilities Consider the following program written in System C.

def sayTime(): Unit { console.println("Current time is: " + time.now()) }

It defines a block sayTime that prints the current time to the terminal. To do so, sayTime uses
two capabilities: console and time. As expected of second-class values, this is not mentioned
in the type, which is sayTime: () = Unit. Here, we rely on scope-based reasoning—we
can reference both console and time, therefore we can use them. This intuition carries over
to capability-polymorphic terms. Consider repeat, which takes a block parameter £ and
repeats it n times?.

def repeat(n: Int) { f: () = Unit }: Unit

{if (m==0) { O } else { £O; repeat(n - 1) { f }} }

Unlike traditional effect systems, in which repeat would need to be explicitly effect-
polymorphic, we rely on scope-based reasoning—repeat receives f as second-class argument,
therefore it can use it. Similarly, wherever we can use a capability, we can also use it with
repeat.

repeat(3) { () = console.println("Hello!") }
repeat(3) { OO = sayTime() }

3.2 Boxes

There are situations in which scope-based thinking fails us—we sometimes want to prevent a
given term from being able to use some (or all) capabilities. For instance, consider a function
parallel that takes two blocks and runs them in parallel:

def parallel { f: () = Unit } { g: (O = Unit }: Unit
parallel { () = console.println("Hello, ") } { () = console.println("world!") }

2 We enclose value parameters (and arguments) with parenthesis and use curly braces for block parameters
(and arguments).

Brachthauser, Schuster, Lee, and Boruch-Gruszecki

In this example, argument blocks can capture arbitrary capabilities. Evaluating them in
parallel could perform non-deterministic side-effects or introduce data races. But how can we
express a version of parallel that requires the function arguments to be pure? The answer
in System C is: we transition to type-based reasoning:

def parallel(f: () = Unit at {}, g: () = Unit at {}): Unit

In this version, parallel now expects first-class functions as arguments. First-class functions
are blocks whose types keep track of what set of capabilities they might reference. The
functions passed to parallel need to be pure—they cannot reference any capabilities. Our
problematic call to parallel now look as follows:

parallel(box {console} { () = console.println("Hello, ") }, // ill-typed!
box {console} { () = console.println("world!") }) // ill-typed!

The type of either argument is () = Unit at {console}, making the above ill-typed3.

Note how box marks the transition from scope-based to type-based reasoning. It takes a
block and turns it into a first-class value. The boxed block can only access capabilities
admitted by the boxed type. In the following, we manually annotate the box with {} and
thus console cannot be accessed:

box {} {) = console.println("Hello, ") } // ill-typed!

To complete the picture, consider what capability sets would be inferred in the following
term:

box {7} { OO = sayTime() }

Intuitively, we should allow sets no smaller than {console,time}, since sayTime itself uses
those capabilities. But how can System C infer this information and refuse programs like the

ill-typed example above? The answer is that this information is kept at the binders itself.

Which is to say, our system annotates the following blocks with capability sets:

def {console,time} sayTime() : Unit
def {} repeat(n: Int) { f: () = Unit }: Unit
def {console,time} sayTimeThrice(): Unit { repeat(3) { () = sayTime() } }

3.2.1 Local Capabilities

So far we have only discussed global capabilities, which prevented us from highlighting one
important aspect of our approach to capabilities. In System C, neither capabilities nor blocks
can be returned. Why do we want such a restriction? Consider the following term:

withFile("a.txt") { file = file.readByte(0) }

Function withFile creates a capability to access a file, and passes it to a block. After the
block terminates, withFile closes the handle and returns the result of the block. If we let
the handle outlive the block, using it afterwards results in an error—this is precisely what we
want to prevent. We could follow Osvald et al. [41] and Brachthéuser et al. [9] and forbid to

3 We use the notation {...} to display capability sets, which are inferred by the type checker and
displayed by the IDE.

TR 2022

10

Effects, Capabilities, and Boxes

return any capabilities or functions that close over them. However, this is overly restrictive
since sometimes we might want to return a capability from some scope, other than its own.

» Example 1. Consider that we may want to do the following: open file A.txt, open file
B.txt, read B’s contents to define a block that then continues to read from A, return the
block from the scope of file B so that we can use it. Naturally, our block will need to use the
handle to A, so how can we return it? We boz the block into first-class value, at which point
we can see (based on its type) that returning it is safe. The above scenario can be modeled
in System C as follows:

withFile("A.txt") { fileA =
val offsetReader : Int = Byte at {fileA} =
withFile("B.txt") { fileB =
val offset = fileB.readByte(0);

return box {fileA} { pos = fileA.readByte(pos + offset) }
3
(unbox offsetReader) (10)
}

Note how in order to use offsetReader, we first need to unboz it. In System C, first-class
functions cannot be used at all—they first need to be unboxed, which turns them back into
second-class blocks*. We only allow unboxing when all the capabilities mentioned in the
box’s type are in scope. The reason for why this is sound becomes apparent if we consider
the previous sentence—since unboxing turns boxes back into second-class values, we can only
unbox blocks in environments that anyway have access to no less than what the block has
access to!

3.2.2 From Scope-Based Reasoning to Type-Based Reasoning and Back

Our notion of scope-based reasoning comes from the idea of second-class values [41]. The
familiar concept of lexical scoping enables convenient and flexible reasoning about the use of
effects [54, 9]. As already pointed out, not being able to return second-class values at all is
an overly harsh restriction. Other than the example we have already seen, it immediately
rules out the common technique of currying functions with second-class arguments.

Our notion of type-based reasoning is inspired by an approach to reasoning about effects
with capabilities introduced by Choudhury and Krishnaswami [12]. They demonstrate how
to recover a notion of pure functions in a language that does not otherwise keep track of
effects. The idea is to have a special type of values that are guaranteed to not have access
to any capabilities. We take this idea and generalize it to keep track of which capabilities
a value has access to. A function of type S = T at {} is known to be pure, but we are
not limited to using the empty set in function types. An example is the value box sayTime,
which has an inferred capability set of {console, time} . That is, we not only know that it is
impure, but also which capabilities it closes over.

System C harmoniously combines these two ways of reasoning about effects via capabilities
and allows programmers to move between them. We mediate between blocks and functions
by explicitly converting them with box and unbox, respectively. As long as blocks are used
in a strictly second-class manner, by design, closing over capabilities is not visible to the

4 In our implementation of System C, we infer almost all necessary boxing and unboxing operations.
However, in the paper, for exposition we refrain from doing so.

Brachthauser, Schuster, Lee, and Boruch-Gruszecki

programmer. However, as soon as a function is used as a first-class value, the capabilities
come to light.

3.2.3 Capability Polymorphism

Effect systems based on capabilities give rise to a new notion of contextual effect polymor-
phism [9], as observed in the repeat example. Blocks passed to repeat can simply use
all capabilities in their lexical scope. Since System C supports boxing blocks, this (so far
invisible) polymorphism now can manifest itself in types:

def repeater { f: () = Unit }: Int = Unit at { £ }
{ return box { n = repeat(m) { £ } } }

The return type of repeater uses a limited form of term dependent types to express capability
polymorphism: intuitively, the returned function closes over any capabilities that £ closes
over. This becomes visible when calling repeater with sayTime, which closes over console
and time:

val repeatTime : Int = Unit at { console, time } = repeater { sayTime }

By design, block arguments, such as f are always capability polymorphic. In contrast,
block definitions, such as sayTime are always capability monomorphic. Only capabilities and
polymorphic block variables are allowed to occur in capability sets.

3.3 Effect Handlers in System C

System C combines the notion of second-class values with a particularly general and challenging
language feature (already present in System =): effect handlers [44, 45]. One potentially
uncommon aspect of our effect handlers is that we use lexical effect handling in capability-
passing style [5, 9]. We briefly introduce effect handlers and refer the interested reader
to other introductions [46]—the work by Zhang et al. [56] and Brachthéduser et al. [9] is
particularly similar in syntax and semantics to our approach. Potentially the simplest and
most familiar application of effect handlers are exceptions.

try { console.println("hello"); exc.throw("world"); console.println("done") }
with exc: Exc { def throw(msg: String) { console.println(msg + "!") } }

After printing the string "hello", by invoking exc.throw, control flow is transferred to the
handler, which simply prints the string "world!". The final call to println is unreachable.
Handlers introduce capabilities, such as exc, which here has type Exc. The attentive
reader will notice a potential problem—if capabilities are terms, what happens if we perform
exc.throw outside of the enclosing try? The answer is: exc is a block and cannot leave the
enclosing scope. As such, exc.throw can only be performed when it is handled. Trying to
return it will yield a type error:

try { return (box {exc} exc) } with exc: Exc { ... } // type error

The type of the boxed capability is Exc at {exc}, which is not well-formed outside of the
corresponding handler that binds it. Unlike exceptions, effects handlers in our system are
not limited to aborting the computation—they can continue it at the original call to the
capability.

11

TR 2022

12

Effects, Capabilities, and Boxes

val before = time.now();
try { console.println(watch.elapsed()) } with watch: Stopwatch {
def elapsed() { resume(time.now() - before) }

}

Again, the handler introduces a capability of type Stopwatch. However, this time the handler
implementation resumes the computation by passing a value of type Int, the return type of
the effect operation. Interestingly, the continuation resume closes over both the capabilities
used by the handled program, as well as the capabilities used by the handler itself. In this
case, we have box {console, time} resume since the handled program uses console and the
handler uses time.

3.4 Conclusion

System C combines two approaches to effects via capabilities: scoped-based reasoning (which
admits lightweight polymorphism) and type-based reasoning (which enables reasoning about
absence). We can move between the two styles with box and unbox.

4 Formal Presentation

In this section, we formally present the syntax, static and dynamic semantics of System C, and
highlight meta-theoretic properties. The presentation follows the one of Brachthéduser et al.
[9]. For clarity, and to focus on the novel aspects of System C, we omit type polymorphism
from our presentation of System C, which is largely orthogonal to the rest of our calculus
(Section 5.1). We highlight some important aspects of the calculus, which we will discuss
later in full detail®.

Computation and values Since the calculus supports control effects via effect handlers, it is
presented in fine-grain call-by-value [31]. We syntactically distinguish statements, which may
perform effectful computation (that is, they are serious in the terminology of Reynolds [47]),
from expressions and blocks, which are pure (that is, trivial) and cannot perform effects.

Values and blocks Following Brachthéuser et al. [9], we separate the universe of values
into expression values that are considered first-class [41] and block values, which we consider
second-class. To emphasize the first-class nature of expression values, we often speak of values
and blocks. Importantly, blocks may implicitly close over capabilities, whereas values are
explicit and reveal captured capabilities in their type. Syntactically, we distinguish between
variables that stand for expression values (x, y, ...) and variables that stand for block values
(f, g, ...). The stratification can also be observed on the level of types, where we introduce
value types 7 and block types o, correspondingly.

Boxing and unboxing Blocks can be lifted into values by boxing—reifying contextual infor-
mation in the type; (function) values can be lowered into blocks by explicit unboxing—making
capture information contextually available.

5 An extended technical report [10] includes our calculus and its operational semantics in more detail.

Brachthauser, Schuster, Lee, and Boruch-Gruszecki

4.1 Syntax

Figure 1 defines the syntax of System C. We have syntactic categories for expressions, blocks,
and statements. Only statements can perform effectful computation. As usual, we follow
Barendregt [3] and require that all variable names are globally unique.

Syntax:
Expressions e T expression variables
() |0 |1 .. | true |false | ... primitives
box b box introduction
Blocks b f block variables
{ (@i 74, fij: 05) = s} block implementation
unbox e box elimination
Statements] def f = b; s block definition
b(e:, b;) block application
valz = s; s sequencing
return e returning
try { f = s } with { (=, k) = s} handlers
Types:
Value Types T Int Boolean | ... base types
oatC boxed block types
Block Types o (Ti, fi: 05) = 7
Capabilities C 01{f} |CcucC
Environments:
Environments r 1] empty environment
' z: 7 value bindings
r, f:* tracked bindings
r, f:€ transparent bindings

Figure 1 Syntax of the language System C — differences to System = highlighted in grey .

4.1.1 Expressions

Expressions are either variables, primitives, or boxed blocks. The evaluation of expressions
never has side effects. We could add, for example, integer addition to the syntactic category
of expressions. Boxing a block (i.e., box b) performs no side effects either, and only reifies
the information about its captured capabilities from the typing context into the type of the
resulting boxed block. The ability to box blocks presents a significant extension to other
calculi with first- and second-class values [41, 9], because it allows a second-class block b to
be lifted to become a first-class value v.

4.1.2 Blocks

Blocks in System C play the role of functions in other languages. In contrast to traditional
functions in other lambda calculi, our blocks are multi-arity to avoid the complexity of

currying in effectful languages. Blocks come in two forms: block literals and unboxed values.

13

TR 2022

14

Effects, Capabilities, and Boxes

N
P

Block literals are of the form { (z; = 74, fj: o0;) = s }. They simultaneously abstract over
multiple value parameters x; : 7; as well as multiple block parameters f; : ¢;. The body
of a block literal is a (potentially effectful) statement. Unboxing an expression with
(unbox e) re-embeds the first-class (function) value e into the universe of blocks. Boxing and
unboxing are inverse operations of each other and we have that box (unbox e) = e as well
as unbox (box b) = b.

4.1.3 Statements

Finally, statements represent potentially effectful computation in System C. Block definitions
def f = b; s and statement sequencing operations val x = sj; s evaluate blocks and
statements to block and expression values respectively and bind them to names before
evaluating the remaining portion of the program. Multi-arity block application takes
multiple expressions as well as multiple blocks. Note that only blocks can be applied, and in
particular, boxed blocks must first be unbozed before they can be called.

Effect handlers System C supports effect handlers in capability-passing style [9]. A handling
statement of the form try { f = s } with { (z;, k) = s2 } introduces a fresh capability f
in the scope of the handled program s;. When the capability is invoked, control is passed
to the handler s, with arguments bound to 7; and the continuation bound to k. Calling
the continuation transfers control back to original call-site of the capability. Note that only
expression values can be passed to the capability, which is important for effect safety, as
otherwise a capability introduced in the body of the handled program may leave its defining
scope.

4.1.4 Types

System C differentiates between value types 7 and block types o, just like how it distinguishes
expression values and block values; we assign value types to expression values, and block
types to blocks. Analogously to term-level boxing, a block type o can be annotated (or
“boxed”) with a capability set C to form a value type (that is, o at C). Grammatically,
capability sets C are sets of block variable names f — however, well-formed types and terms
can only mentioned a subset of bindings, which we explain in Section 4.1.5. Block types take
multiple value types 7; and multiple block types f; : o; to a single value type 7. In particular,
the return type 7 can mention any of the bound f; within a capability set. Block types add
a limited form of term dependency to System C. One example is a capability-polymorphic
identity function: { (f: o) = return box f }. Here, the term-level boxing is reflected in the
return type of (f: o) — o at {f}, which mentions f.

4.1.5 Environments

Contexts I' can bind first-class values z : 7 and second-class blocks. Based on different
annotations on the binder, we distinguish between two different kinds of block bindings.
Firstly, a binding of the form f :* o is tracked. That is, the use of the block f will be tracked
by the type system. We also refer to these tracked block variables as capabilities. Only
tracked bindings can be mentioned in capability sets Appendix A.1. Secondly, a binding of
the form f :© o is transparent. In order to use block f, all capabilities C are required to be
in scope. We refer to those bindings as transparent, since using f by itself will not be tracked

Brachthauser, Schuster, Lee, and Boruch-Gruszecki

Surface Language Core Calculus

def f(x: T1) { f : T2 = T3 } = ... deff = { (x: Ty, f: To — T3) = ... }Block abstr.
t{x= ... 1% f{x= ..} Block app.
{T1 = T2} = T3 (f: Th— T2) > T3 Block types
try { ...} £ : Swith { ... } try { f = ... } with { (x, resume) = ... } Resumptions
£(g()) val x = g(); f(x) Fine-grain CBV
sl; s2 val x = s1; s Sequencing

in the type system. Furthermore, they will never occur in capability sets and consequently
do not occur in types.

4.2 Surface Syntax

There are differences between our formal calculus and the surface language we have used in
our motivating examples. To facilitate mapping between the two languages, Table 7?7 relates
the syntax and summarizes a few syntactical abbreviations. In System C, block definitions
have separate lists of block and value parameters separated by a comma. Our informal
syntax distinguishes between value parameters and block parameters, by enclosing value
parameters in parenthesis and block parameters in braces. In the examples, we also use
additional features such as type polymorphism, algebraic data types, or mutable variables.
Those extensions will be discussed in Section 5.

4.3 Typing

The static semantics of System C is defined in terms of three typing judgements for expressions,
blocks, and statements (Figure 2). We present the (meta-level) syntax of the judgements
itself in grey. We start with block typing as it features the most relevant ideas in System C.

4.3.1 Block Typing

Typing judgements for blocks and statements have the form T’ b : o C. In these
judgements, C is a subset of I and tracks the effect of mentioning capabilities. We can read
it in two ways: first, as an input, which describes a context restriction; only those capabilities
mentioned in C will be available. second, as an output, which describes a context requirement;
typing b requires all tracked capabilities in C to be in scope. As usual, we require that all
components b, o, and C are well-formed with respect to the typing context I'. Typing rules
TRANSPARENT and TRACKED check block variables and express the requirements on the
context. Referencing tracked variables requires the variable itself to be in the context. For
transparent bindings, we require that the annotated capability set C. This is important, as
this constraint enforces the restriction that blocks may only be invoked, and hence effectful
computation are only performed, in a context where the corresponding capabilities are in
scope. A boxed block value can be unboxed through rule BOXELIM only when the annotated
capability set is compatible with the requirements in the current context C. Again, this
ensures that effectful computations can only be performed in a context where its capabilities
are in scope. Finally, rule BLOCK types block literals. As usual, the body of the block
literal s is checked in a context extended with the bindings for values z; and blocks g; where
the latter are marked as tracked capabilities. As we will see in rule APP, this is to support
capability polymorphism. In contrast, all blocks bound by def are capability monomorphic.

15

TR 2022

16

Effects, Capabilities, and Boxes

Block Typing

f€oerl f "o €l
———————— [TRANSPARENT] [TRACKED]
T J o ¢ I 7 o {f}
U,z 74 g; " 0y s -TI1CUyg
P ——— e — [BLock]
Lo A @7, g:0)=>s}) (Ti, g« 0j) =T
r e oatC r b o C ¢ cc¢
[BoxELiv] [BSus|
r unbox e : o 1 C r b o1 C
Expression Typing
r e T
— L] z: 717 el T b o
— |Va BoxlI e}
boonnt T
Statement Typing
r s 11 C
T 30 70 | Co I, z: 7o S1 71 | C1 r e T
[VaL] [RET]
r valz = so; 81 - 711 Co UCy r returne - 71
T b (i, fi: o)) >T11C T €; T T b; oj g
LA L T [aer]
Ieob(e, b) - 7li—= Gl C UG
r b o1 C r,f o s 1 L+ s 7:C rcc¢
[DEF] [SSuE]
r def f = b;s - 71 C r s - T1C
L, f™* 7i— 7o s 11 C U{f}
L,z 7, k€ 707 S2 T1C
T T [Tas]
r try {f= s twith{(z, k)= s} :71C
Figure 2 Static semantics of System C.
4.3.2 Expression Typing
The judgement form T" e : 7 assigns a value type 7 to an expression e, in a typing

environment ['. Expression typing is completely independent of any requirements on the
context. This highlights a central aspect of System C: expressions are first class and can be
freely used without any limitations. This is safe, as capabilities that are implicitly captured
by an expression can only be used by unbozing the expression, which checks if the capabilities

Brachthauser, Schuster, Lee, and Boruch-Gruszecki

mentioned on the boxed type are present in the lexical context. Most rules are completely
standard; the only interesting rule is the rule for boxing blocks — BOXINTRO, which reifies
the requirement C under which we check the enclosed block b into the type ¢ at C, making it
visible to the programmer.

4.3.3 Statement Typing

Typing rules VAL and RET are completely standard. VAL simply collects the requirements
for the binding and the body. Rule RET types and expression and thus does not have any
requirements. Similarly to block typing, statement typing includes a rule SSUB to shrink the
current requirement to a subset. Let us now explain the other three rules in detail.

—_

Typing applications Rule APP, is used to check an application b(e;, b;). The callee b has
to be checked against a block type. The value arguments e; need to conform to value types
7;. Typing each block argument b;, however, can result in different requirements C;. The
resulting type of checking the application is 7[f; — C;]. That is, occurrences of block variable
names f; in the return type 7 are substituted with the concrete requirement the arguments
could be type checked in. Where BLOCK serves the dual purpose of abstracting over terms
(expressions and blocks) and (implicitly) over capability sets, rule APP now applies the block
b to terms as well as (implicitly) to capability sets.

Typing block definitions Rule DEF checks the bound block b under an arbitrary restriction

C’ and annotates the binder with this restriction to type check the rest of the program s.
Block definitions are transparent, that is, f itself will not show up in any capability set.

Notably, the restriction C’ is independent of C and thus does not necessarily need to be
a subset of C. In this regard, rule DEF is very similar to rule BOXINTRO as it delays the
requirements C’ to the use site of f.

17

Typing effect handlers Rule TRy checks statements of form try { f = s; } with { (7;, k) = s2 }

in a context I" under a context requirement C. We first discuss typing of the body s; and
typing of the handler s;. Handling brings a fresh capability f into the scope of the handled
program s;. The capability has block type 7; — 7¢, which we also refer to as the effect
signature. That is, given a list of value arguments it returns a value of type 7¢. We refer
to 7; as the types of the arguments of the effect operation, to 7 to the return type of the
effect operation, and to 7 as the answer type of the handler. Like in the rule BLOCK, the
capability binding for f is marked as being tracked. However, unlike rule APP we do not
substitute for f in the answer type 7. This is essential to guarantee effect safety. By marking
f as tracked, it cannot leave the scope of the corresponding handler that introduced it. In

particular, if a first-class function closes over f, then f will necessarily appear in its type.

That is the following example program does not type check, since box f has type o at {f}:
try { (f: o) = return box {f} f} with{ ..}

The return type o at {f} is not well-formed outside of the handler, since the block variable f is
not bound. In consequence, effect safety indirectly follows from (1) tracking capabilities and
(2) well-formedness of types. Finally, the handler implementation so itself is type checked in
a context extended with the parameters of the effect operation x; : 7; and the continuation
k. The continuation expects a value of type 7¢ as an argument (the return type of the
effect operation), and will itself return 7 (the answer type of the handled statement). Most

TR 2022

18 Effects, Capabilities, and Boxes

Extended Syntax for Operational Semantics:

Runtime Labels [Q@abf | @4ba | ... labels
Runtime Statements v | #1{ s} with { (z;, k) = sdplimiters
Runtime Blocks b ... | cap, capabilities
Runtime Capabilitiés . {l} label sets
Runtime Signature& 0= I: T — To label context

(a) Extended Syntax of System C.
Evaluation Contexts:

Contexts E O valz = E; s #, {E}with { (z, k) = s}
Delimited ContextH; Olvalz = Hy; s | #y {H }with { (z, k) = s} wherel#

Reduction Rules:

(boz) unbox (box b) b

(val) val z = return v; s slz — v

(def) def f = w; s sif —]

(ret) #: { return v } with & v

(app) ({ (2, ;) = s)i, w) slai = v, f; 5 €, i w
where 0 - w; : o; | C;

(try) try {f = s}with{ (=, k)= s} #,{ s[f — {I}, f > cap)] } with { (=, k) = & }
where | ¢ dom Z, and f Ti = To, then Z(I) := Ti— To

(cap) #1 { Hi[cap,(v;)] } with h s[zi = vi, k— { y = #; { Hreturn y] } with h }]

where h = { (z, k) = s }
(b) Operational semantics of System C — we omit congruences.

Figure 3 Additional runtime constructs and operational semantics of the language System C. The
global context = maps labels to effect signatures at runtime — it is extended by rule (try).

importantly, the continuation is marked as transparent and annotated with the capability set
C. As witnessed by the operational semantics, the continuation closes over both the handled
statement as well as the handler statement and thus is annotated with C, the restriction
which both statements are type checked under.

4.4 Operational Semantics

We define the semantics of System C as a small-step operational semantics using evaluation
contexts [52]. To allow capturing and resuming continuations, the semantics of System C
closely follows the generative semantics presented by Brachthéuser et al. [9], who in turn
present a variant of multi-prompt delimited control [22, 5]. Figure 3 extends the syntax with
runtime constructs that only appear during reduction:

Labels All runtime constructs refer to unique runtime labels I. We only require that labels
can be compared for equality and that we are able to generate fresh labels at runtime. We
represent concrete labels as hexadecimal hashes (e.g., @5f) to highlight that they are created

Brachthauser, Schuster, Lee, and Boruch-Gruszecki

at runtime.

Delimiters The additional statement #; { s } with { (z;, k) = s } represents a delimiter
that delimits a statement s at a given label [(or prompt in the terminology of Felleisen
[19], Sitaram [50], and Gunter et al. [22]). It also contains the original handler implementation
{ (7, k) = s }, which we sometimes abbreviate with the meta variable h.

Capabilities The additional block value cap; represents a capability. Calling a capability
captures the stack segment up to the next dynamically enclosing delimiter for the label I,
and transfers control to the corresponding handler. While we could also attach the handler
implementation to the capability and pass it, alongside the label, to the call-site [6, 54], we
choose to locate the handler with the delimiter, because it simplifies proofs.

Label sets Capability sets C are extended with an additional production (e.g., {I}), which
effectively turns them into heterogeneous sets of block variables and labels. Source programs
start with variable sets only—reduction then replaces free block variables with runtime labels.

Label contexts The global label context = behaves like a store and maps runtime labels to
effect signatures 7; — 7o. The label context is merely a proof device necessary to prove type
preservation.

Reduction Rules

The presentation of the operational semantics in Figure 3b follows Gunter et al. [22] and is
based on delimited evaluation contexts H; where the label [does not appear in any delimiters
in H;. This is necessary to establish that captured continuations are always delimited by
the dynamically closest delimiter for a label. Most reduction rules are standard and we only
point out significant differences to previous presentations. The full operational semantics, as
well as definition of expression values v and block values w can be found in Appendix A.2.
We overload the notation for substitution in the following way: we use f — w to refer to a
substitution of block variable f by block value w in terms. Additionally, we use f — C to
refer to a substitution of block variable f by capability set C in both terms (that is, in type
annotations) and types. This substitution replaces all occurrences of f in capability sets by
C. The result of substitution is then flattened.

Reducing values and blocks The only reduction of expressions and blocks is box/unbox
elimination as defined in rule (boz)®. To keep the presentation concise, we omit congruences.

Value and block binders The reduction of value (val) and block binders (def) is completely
standard. Since blocks bound by def are capability-set monomorphic, reducing block binders
only performs term-level substitution f — w and does not need to substitute a capability set
for f.

5 One could imagine that blocks are stack-allocated, while boxed blocks are heap-allocated. Unboxing
then could copy the closure back to the stack. We leave working out the details of this observation to
future work.

19

TR 2022

20

Effects, Capabilities, and Boxes

Application substitutes capability sets In contrast, in reduction rule (app), we simultane-
ously substitute f; with a block value w; in terms and a capability set C; in types. Like in
typing rule AppP, C; denotes the context requirement the argument block w; was checked in.
Interestingly, all redexes (including application) can be type checked in the empty typing
context I'. This implies that the substituted capability sets C; do not contain any block
variables, but only runtime labels.

Handling introduces delimiters Rule (try) creates a fresh runtime label I, delimits the
handled statement s with this label, and substitutes a capability that refers to [for the block
variable f. Similarly, on the type-level, we substitute the singleton label set {l} for block
variable f. As a side-effect, we record the effect signature of f in the global label context =.
As already pointed out, the global context is only necessary to prove type preservation—when
handling an effect operation, we need to establish that the type of the capability and the
type at the handler still agree.

Capabilities capture the continuation The most interesting rule (cap) captures part of
the context H;. The application of a capability with label [is only meaningful in a context,
which is delimited at label [. This becomes visible in (cap), where the delimiter #,, the
delimited context H;, and the capability application form a redex. We reify this context
as a continuation and substitute it (as well as the argument v) in the body of the handler
implementation. Effect safety means that applications of a capability with label [only occur
in a context that contains a delimiter at { (Theorem 3).

Only boxed values can leave delimiters Once a statement is reduced to a value, rule (ret)
discards the delimiter. This is the very point where effect safety could be violated. So why
is this reduction safe? As already pointed out in the discussion of typing rule TRy, since
only values can be returned, blocks that could potentially close over labels will have to be
boxed. Boxing in turn reifies captured capabilities, and therefore labels, into the type of an
expression. Wellformedness of type of v guarantees that no reference of [can occur in the
type and thus v cannot close over [.

» Example 2. In fact, a returned value can close over a label—but only if the corresponding
capability is never used. Take the following example reduction:

try { f = return box {} { () = valg = box f; return 42 } } with { ... }

The example type checks and the returned value has type () — Int at {}. By rule (try), we
obtain

#ea31 { return box { () = val g = box cap,,,,; return 42 } } with { ... }
which then (by rule (ret)) steps to:
box { () = val g = box capg,s,; return 42 }

Notably, the returned value does contain a reference to label @a31. However, the value itself
cannot be unboxed, as we show in Section 4.5, disarming the capability it contains.

4.5 Safety

We state progress and preservation and point out important aspects of our proof.

Brachthauser, Schuster, Lee, and Boruch-Gruszecki

4.5.1 Progress

Given an arbitrary label context =, closed and well-typed System C programs either return
a value or can take a step. Here, the relation (defined in Appendix A.2, Figure 5b)
describes congruence, that is, statement reduction under an evaluation context E.

» Theorem 3 (Progress of System C). If 0 s 71 0, then s is return v or s s

The proof of progress is mostly straightforward. Only the case of capability application
requires special precautions. In particular, we state the following auxiliary lemma.

» Lemma 4 (Labels are delimited). If 0 Elcap,(v;)] - 71 0
and I’ cap,(v;) - v 1 C and E 7~ 71C,thenE = E[#,{ H } withh].

This lemma uses the judgement E : 71~ 72 1 C to type contexts, which is defined in
Appendix A.3. Here, 71 is the type at the hole and 75 is the return type of the resulting
statement. Importantly, capability set C can be thought of as an output of the relation.
It represents the restriction under which the hole can be type checked, that is, all labels
delimited by the context.

Proof of Progress. The proof of progress simply amounts to splitting s into an evaluation
context and a redex, such that s = E[$4). If 8.4 is a redex, other than cap,(7v;), we can
simply invoke rule cong, otherwise we use Lemma 4 followed by rule (cap). <

4.5.2 Preservation
Performing a reduction step on a statement preserves its type:
» Theorem 5 (Preservation of System C). If 0 - s : 71 Dands s then 0 s T

Proving preservation requires proving of substitution lemmas. In particular, it requires a
variant taking simultaneous substitution of blocks and capability sets into account:

» Lemma 6 (Substitution of blocks and capability sets). Given a well-typed statement
Iy, f:* o, I s 7 | C1 and a block E b o | Cq that can be checked under re-

21

striction E Co wf, then Ty, Taff — Cso] s[f = b, f—=Co] « 7[f = Co] 1 Cif — Cal.

The corresponding lemmas for expressions and blocks are similar.

Proof. The proof proceeds by mutual induction over the typing derivation. Due to context
restrictions and capability sets, proving substitution requires reasoning about subset inclusion,
but is straightforward otherwise. Notably, by construction all entries [: 7; — 7¢ in the

signature environment Z are typable in the empty context I' and thus substitution is
idempotent on them. |

Furthermore, we need to make sure that capturing the continuation preserves types.

» Lemma 7. Given a well-typed effect call 0 Hi[cap,(v;)] : 71 C U{l} with effect
signature | : T; — 7o € Z, it follows that y : T Hreturny] : 71 C U{l}.

Proof of Preservation. By induction over the typing derivation, followed by inversion on
the step taken. Steps (app) and (try) both require the lemma for simultaneous substitution
(Lemma 6). The only other interesting case is the application of rule (cap). Here, we need to
construct a typing derivation for s[z; — v;, k + { y = #; { Hireturn y] } with h }]. As-
suming the label typing | : 7; — 79 € Z, in order to apply the substitution lemma on the

continuation k, we need to show that 0 - { y = #; { H)[return y] } with h } = 79 — 7 1 C.

After applying rules BLOCK and RESET, we finally use Lemma 7 to conclude the proof. <«

TR 2022

22

Effects, Capabilities, and Boxes

4.5.3 Effect Safety

We characterize effect safety as ruling out a particular class of stuck terms: capability
applications without a corresponding delimiter [9].

» Definition 8 (Undelimited Label). A statement s contains an undelimited label 1, if it has
the form Hi[(capy(v;)].

» Corollary 9. Starting from an empty context reducing a well-typed program s:T 10
never results in an undelimited label.

This corollary directly follows from progress and preservation. It further relates to Lemma 4,
which guarantees that labels are always delimited.

4.5.4 Mechanization

This paper is accompanied by a mechanization of System C in the Coq theorem prover [4], as
well as proofs of the usual progress and preservation theorems. To facilitate mechanization,
we chose to diverge from the presentation in the paper:

Representing names We base our mechanization efforts on the proofs by Aydemir et al. [2],
who in turn use a locally nameless representation to distinguish free from bound variables.
Consequently, we represent capability sets as triples of free variables (opaque atoms), bound
variables (natural numbers), and labels. The universes of labels and atoms are disjoint.

Explicit annotations Instead of assuming capability sets from the context, as is done in our
presentation of System C, our mechanized formulation requires that some terms are explicitly
annotated with that capability set. This includes application (i.e., b(e;, b; @ C;)), block
definition (i.e., def f @ C = b; s), and handlers (i.e., try @ C { f = s } with h). This
way, in the mechanization we never have to infer the capability sets and restrictions.

Abstract machine semantics We model the semantics of statements with control effects
in terms of a state machine (Appendix A.4). This way, to search for the correct delimiter
unwinding the stack takes place frame by frame. For each unwinding step, we can easily
establish the invariant that all free labels in the captured continuation are delimited in the
remaining stack, and that the effect call can be type checked in the composition of the
continuation and the stack.

Label safety To ensure that an effect handler associated with a label is invoked with the
right arguments, we extend the state of the abstract machine with a field for runtime effect
signatures =, acting as a source for fresh labels [18] and to guarantee that the handler itself
is invoked with arguments of the proper type [9].

Type polymorphism Finally, to ensure that System C can be used as a basis for modeling
effect safety for practical languages, we formalized support for value-type polymorphism in
our mechanization of System C, as described in Section 5.1. As value types 7 are orthogonal
to the effect system in System C, our proof terms for dealing with value-type polymorphism
are mainly straightforward extensions of the proof terms one would obtain in a mechanization
of System F. In particular, one can never unbox a term which is typed with a value-type
variable—BOXELIM expects a expression typed with a concrete boxed block type.

Brachthauser, Schuster, Lee, and Boruch-Gruszecki

5 Discussion of Language Extensions

We have implemented the static and dynamic semantics as a compiler from System C to
JavaScript. We submit the implementation, all the code examples in this paper, as well as
additional small case studies as supplementary material. In this section, we further evaluate
the design of System C and the involved concepts by discussing several implemented language
extensions.

5.1 Parametric Type Polymorphism

I, X b ol C r b VX.o0 1 C
[TABs] [TAPP]
r X]=0b :VX.01 C r bjr] : o[X+—1T1] I C

Type polymorphism is largely orthogonal to tracking capture in capability sets. To support
type polymorphism, we extended the syntax of blocks with support for type abstraction
and type application, together with the above two standard typing rules. Importantly, type
variables X range over value types, not block types. That is, values of type X cannot
silently close over capabilities. A function like def f[X](x : X) cannot perform unboxing on x
since it is parametric in its type X. We extended System C with type polymorphism in our
implementation and proved its soundness in our mechanization. Proving the extension did
not impose any interesting challenges.

5.2 Mutable State

In languages with support for control effects, the implementation of local mutable variables
requires some care in order to obtain the correct backtracking behavior [25, 7]. Effect handlers
are general enough to express mutable state, but rely on first-class functions to do so. Where
System = was unable to express local state as an effect handler, System C with its support
for first-class functions now makes it possible.

def handleState[S, R](init: S) { prog: {State[S]} = R }: R {
val stateFun: S = R at {prog} =
try { val res = prog { state }; return box {prog} { (s: S) = res } }
with state: State[S] {

def get() { box {prog} { (s: S) = (unbox resume(s))(s) } }
def set(v: S) { box {prog} { (_: S) = (unbox resume(()))(v) } }
};

return (unbox stateFun) (init)

}

This example in System C type checks and exhibits the correct behavior. The boxed block
uses the capabilities that prog uses. While it is possible to emulate local mutable state
with effect handlers, for efficiency and flexibility it is worthwhile to investigate a direct
implementation.

Scoped State To support state, Figure 4 extends System C with two new block types: Reg
to describe dynamic regions and Ref[7] to represent reference cells of type 7. We also extend
the language with three new statement forms. region { f = s } delimits a fresh region and
introduces a region capability Reg that can be used to create fresh references. References of
type Ref[r] can be accessed (i.e., !b) and written to (i.e., b := e) using the new statement

23

TR 2022

24

Effects, Capabilities, and Boxes

T, f:* Reg s 11 C U{f} T e T r b Reg 1 C
- [REGION] [NEW]
r region { f=s} : 71 C r new b(e) : Ref[r] I C
r b : Ref[r] 1 C r b : Refl[r] 1 C r e - 11C
[GET] - [PuT]
r b 171 C r b:= e : Unit C

Figure 4 Extension with local backtrackable state.

forms. Finally, new b(e) is a block, which given a region initializes a fresh reference and
returns a capability to access that reference. The example on the left presents a simple

example using the state extension”.

region r { region r {

var x in r = 42;
val t = x; val f: () = Int at {r} =box {r} { O = x };

x=(t + 1) (unbox £) ()
} }

We create a region, allocate a reference initialized to 42, and increment its content. The
example on the right illustrates that access to mutable references becomes visible in boxed
blocks. The box is typechecked under {r}, since dereferencing x requires r to be in scope.
In our implementation, every block definitions and effect handlers implicitly creates a new
region; for example, function definitions def myFun() { ... } automatically introduces a
fresh (equally named) region def myFun() { region myFun { ... } }. When allocating
a variable, omitting the region will default to the closest lexical region. This allows us to
express the above example as region r { var x: Int = 42; val t = x; x =t + 1 }
At the same time, however, we still guarantee capability safety. It is interesting to see
how references that are used in a second-class way, and therefore naturally follow a stack

var x in r = 42;

discipline, do not need any special precautions to prevent them from escaping. It is only when
we want to return a reference, or a closure that uses it, that the region becomes visible in the
type. We believe that even for languages without effect handlers this design for region-based
resource management would be worth investigating.

» Example 10. As a more advanced example of mutable state and effects, we demonstrate
one of the original motivations of supporting first-class functions: Being able to express
cooperative multitasking using effect handlers [17, 28, 1].

interface Proc { def fork(): Boolean }

def schedule { p: { Proc } = Unit }: Unit {
var q: Queue[() = Unit at {p, schedule}] = emptyQueue();
try { p {proc} } with proc: Proc {

def fork() { q = enqueue(q, box {p,schedule} { () = resume(true) });

q = enqueue(q, box {p,schedule} { () = resume(false) }) }

};
while (nonEmpty(q)) { val (g2, k) = dequeue(q); q = q2; (unbox k) () }
}

7 The surface language differs slightly from the calculus and we write x for !z, x = e for z = e,
region r { ... } for region { r = ... }, and var x in r = e; s for def z = new r(e); s.

Brachthauser, Schuster, Lee, and Boruch-Gruszecki

The above handler implementation assumes the presence of a Queue datatype along standard
operations such as enqueue, dequeue, and nonEmpty. When fork is invoked, it pushes
two continuations to the queue, once resuming with true and once resuming with false.
In order to be able to store a second-class continuation in a Queue, we need to explic-
itly box it. Boxing reifies the capability set of the continuation into the type, which is
() = Unit at {p, schedule}. The handled program closes over p and the handler itself
uses state allocated in the region named schedule, hence the whole try statement can only
be typechecked under a restriction allowing for both capabilities. As discussed in Section 4.3,
the continuation is also annotated with this restriction.

5.3 Type- and Capability Inference

While we leave a full formal treatment of inference to future work, here we want to report
on our experiences in implementing System C. Reading the context restriction C of a typing
judgement as an output, the type system of System C can be thought of as tracking the effect
of referencing a block variable. This can be seen in typing rule TRACKED, which “introduces”
the variable f into the restriction. However, the typing rules presented in Section 4.3 are not
fully algorithmic. There are four rules that require some adjustments to facilitate type and
capability inference.

Subsumption As usual, subsumption rules BSUB and SSUB present difficulties for type
inference. Since System C only supports subtyping on capability sets (as subset inclusion)
but not on types, in our implementation, we simply defer all applications of subsumption
to one rule: BOXINTRO. If a box is annotated with an expected capability set box C b and
the block b can be checked under C’, we then assert that C’ C C. In all other cases, we
either compute capability set requirements via set union (like rule VAL) or collect equality
constraints (as in TRY below).

Abstraction We rephrase rule for block abstraction BLOCK as follows:

T, z: 74 g o s T1C
’ b9 ! [BLock]
r {@ 79 0)=s} (Ti, g : 05) >71C — g

Inspecting the conclusion, we see that block abstraction conceptually handles (that is, removes)
bound block parameters @7, while application introduces the corresponding capability sets C;
by means of set union in the conclusion.

Capability Set on the Continuation Maybe the most challenging rule is TRY, which masks,
that is removes, a tracked variable. We can rephrase it as:

L, [7i—= 7o s1 0711 G C = (G \{f}) vt
I, =z i k€ 10 =7 S92 71 Co

- = [TRYEFF]
r try {f= s }with{(z;, k) =s} 71C

While the rule above is more algorithmic, the astute reader might have noticed that on
the premise checking ss, the “output” requirement Cs also indirectly appears as part of the
annotation on binder of the continuation k. This cyclic definition makes it difficult to derive a
fully algorithmic variant that assigns Cs to the minimal capability set. In our implementation,
we annotate the continuation binder k£ with a fresh unification variable for the capability set.

25

TR 2022

26

Effects, Capabilities, and Boxes

After checking the handler so, we might have gathered cyclic constraints that would require
fixed point computation to be solved. Our implementation can infer the correct solution for
all examples and case studies submitted, we leave solving the constraints in the general case
to future work. We want to note that this potential complication only arises since we offer
support for first-class continuations. Languages that only support exception handlers and
regions would not encounter this difficulty.

5.4 Effect Handlers and Object-Oriented Programming

In the introduction, we used capabilities like console assuming they have multiple member
methods (e.g., println, and readln). This is not reflected in the description of our core
calculus, which only formalizes blocks, but no objects or methods. The following example
uses an extension with interfaces and objects:

interface Counter {
def inc(): Unit
def get(): Int

}

def makeCounter { pool: Region }: Counter at {pool,consolel}
var count in pool = 0;

def {console,pool} ¢ = new Counter {
def inc() { console.println(count); count = count + 1 }
def get() { count }

+;

return box {console, pool} ¢

}

Perhaps unintuitively we treat objects as a generalization of blocks—that is, they are second-
class by default! This implies that objects, such as c, can simply close over arbitrary
capabilities. In this case, ¢ closes over console and the region pool, which (as with blocks)
is not visible in its type. Only if and when we want to return ¢ do we box it, making its
capabilities explicit in its type. As it has been pointed out earlier [56, 8], it is very natural
to unify the notion of effect signatures and interfaces, capabilities and objects, as well as
handlers and classes. The only difference is that objects created with new do not have a
continuation to capture.

6 Related Work

The calculus presented in this paper builds on different lines of work, centered around
capabilities. In this section, we offer a discussion of this work, before comparing System C to
other approaches based on effects and coeffects.

6.1 Capability-Based Systems

Osvald et al. [41] present a calculus A2, implementing a type-based escape analysis [23]
that distinguishes between first-class and second-class values. They demonstrate that second-
class values provide a lightweight alternative to effect systems, which can even express
borrowing [40]. Our work is closely connected to A'/2: tracked blocks in System C correspond
to second-class values, while expression values correspond to first-class values. They propose
a generalization to arbitrary lattices. Similarly, in System C, we precisely track the capability
sets of transparent block bindings, which form a lattice. In their calculus only pure functions
can be treated first-class, while in System C arbitrary blocks can be boxed.

Brachthiuser et al. [9] build on A\'/2, develop it into a full language with support for
effect handlers, and explore the novel and lightweight form of effect polymorphism offered

Brachthauser, Schuster, Lee, and Boruch-Gruszecki

by treating effects as capabilities. Their core calculus System Z is the basis for System C. It
divides the universe of types into value and block types, and distinguishes between expressions,
blocks, and statements. However, their calculus does not offer explicit boxing and unboxing,
neither on the term level, nor on the type level. In consequence, blocks can never be returned
or stored as values. This greatly simplifies the type system of System Z. System C is designed
to be backwards compatible with System =: Programs only using blocks as second-class need
no changes or additional annotations.

6.2 Representing Closure in Types

Boxing in System C makes the requirements a block imposes on the calling context explicit
in its type. There have been various lines of work to enrich the types of closures with
information about its context. Hannan [23] proposes a type-based escape analysis with
the goal of facilitating stack allocation. The analysis tracks variable reference using a
type-and-effect system and annotates every function type with the set of free variables it
captures. The authors leave the treatment of effect polymorphism to future work. In a
similar spirit, Scherer and Hoffmann [49] present Open Closure Types to facilitate reasoning
about data flow properties such as non-interference. They present an extension of the simply
typed lambda calculus that enhances function types with the lexical environment used to
type the closure. Odersky et al. [39] propose to gradually establish exception safety in Scala
with capabilities. To ensure capability safety, they track captured capabilities by enhancing
types with capture sets. Similarly to System C, their calculus supports a closely related
concept of boxing, as well as lightweight dependent types. Unlike their calculus, System C
distinguishes between first-class values (where capture is tracked in types) and second-class
values (where capture is tracked on binders), improving the ergonomics. System C also tracks
mention of capabilities with an effect-like system, making it more precise. For example, a
statement g :* o def f = g; return () : Unit| 0, has the empty restriction. Finally,
while their system features full subtyping, System C only features subeffecting on blocks and
statements.

6.3 Comonadic Type Systems

Comonadic type systems, as presented by Choudhury and Krishnaswami [12], allow program-
mers to reason about purity in an impure language. A special type constructor Safe witnesses
the fact that its values are constructed without using any (impure) capabilities. Importantly,
explicit box introductions and box eliminations mark the transition between scope-based
reasoning, and type-based reasoning about effects (that is, impurity). The concept of boxing
and unboxing in System C is inspired by their work. They annotate each entry in the typing
context with additional information about whether it is pure (or safe, e.g., x : A®) or impure
(e.g., x : A?), similar to our annotations on block binders. Their notion of purity is related
to our notion of expression values: a pure value is constructed only by accessing other pure
values. Similarly, an expression value in System C can only (immediately) consist of other
expression values. There are two important differences, though.

Generalizing the notion of impurity They only distinguish pure from impure values. Since
it is their goal to create isolated islands of purity in an otherwise impure language, making
this distinction suffices. They already point out that,

[A] direction for future work lies in the observation that our O-comonad [...] takes

27

TR 2022

Effects, Capabilities, and Boxes

away all capabilities [...]. However, we could consider a graded or indexed version of
the same |[...], i.e., O¢, which only takes away a set of capabilities C [...].

In this paper, we do almost exactly this. However, in System C the boxed type ¢ at C does
not witness which capabilities C are “taken away”, but instead, which capabilities might have
been used to construct this boxed value. This generalization is significant for our use case
of establishing effect safety. Effect handlers locally introduce capabilities, that we want to
subtract (or mask), because their effects are delimited and cannot be observed outside of the
handler. This would not be possible in a system that only distinguishes between pure and
impure computation.

Context purification Another interesting difference is our notion of restricting the typing
context. The context of typing judgements for statements I' s © 7 1 C consists of two
parts: the typing context I' and the restriction C. Together, they enable restricting the
use of block variables, as witnessed by rules TRACKED and TRANSPARENT. In System C
this context restriction does not necessarily have to become smaller as we nest boxes. This
is illustrated in the following example on the left, which does type check. Here, we write
box C b to refer to a type ascription box b : o at C for some block type o.

{(f: ()= Int) =

T, f* o) =1¢ f:* o if fecC

return box {} { () = T 1€ o)f = 1€ [4 i o cc

return box {f} { () = f() } (T, f =)¢ = T1° otherwise
}} T, z: ¢ =T 2z:71

On the left, the nested box imposes the restriction {f}, while the outer box imposes a stronger
restriction {}. This is different in the work of Choudhury and Krishnaswami [12] and also in
the work of Osvald et al. [41]. Both restrict contexts by filtering the typing context, written
I'C. In our setting, this restriction could be implemented as sketched on the right. That is,
only those bindings which are compatible with C remain in T8, This eager filtering of the
context is a significant difference which would make the language less expressive.

6.4 Contextual Modal Types

Effectful Contextual Modal Type Theory [57] aims to relate algebraic effects and contextual
modal logic [37]. Like System C, it syntactically distinguishes pure expressions from effectful
computation. The judgement for typing computation (i.e., A;T' F ¢ + T) takes two contexts,
A to bind expressions and I' to bind effect operations. Computations can be embedded
into expressions by boxing, which delays the computation. The type of boxes is indexed
by an algebraic effect theory ¥, reifying the context of effect operations I' at box creation
into the type. While conceptually related, there are a few important differences. Lambda
abstractions in ECMTT can only abstract over expressions, not effect operations. They
also only close over the value context A. In contrast, blocks in System C can both take
expressions and capabilities as arguments and also close over both. In ECMTT the only
way to force a boxed computation is by immediately handling it. Unhandled effects need to
be forwarded explicitly and ECMTT does not support effect polymorphism. Importantly,

8 Furthermore, to maintain well-formedness also all bindings which refer to other filtered block variables
need to be removed.

Brachthauser, Schuster, Lee, and Boruch-Gruszecki

ECMTT is much closer to classical effect systems, while System C implements lexical effects
and models capabilities on the term level, including closure.

6.5 Coeffect-Based Systems

Dually to how effect systems annotate the output of the typing judgement with additional
information, coeffect systems enrich the input of a typing judgement, that is, the typing

context [42]. Petricek et al. differentiate between two forms of coeffects: structural and flat.

Structural coeffects annotate each bound variable, while flat coeffects annotate the context
as a whole. Our annotations on block variable bindings roughly correspond to structural
coeffects, whereas the context restriction C roughly corresponds to a flat coeffect. While
coeffects served as a source of inspiration for System C, the precise connection is unclear. It
would be interesting to to see whether we could instantiate Petricek et al.’s framework. It is
not immediately clear to us how to combine structural and flat coeffects to at the same time
annotate individual bindings and restrict the context as a whole. Furthermore, System C

supports some limited form of term dependency in types to support capability polymorphism.

It would be interesting to see how the coeffect framework could be extended to support
coeffect polymorphism in this way. Our type of boxed blocks ¢ at C is reminiscent of
the graded box modality of Gaboardi et al. [20], but we do not know how to instantiate
their system to accommodate our use case. Our use of box seems to be closer to the box
introduction of Nanevski et al. [37], but again the precise connection is not clear to us.

6.6 Effect-Based Systems with Capabilities

Zhang and Myers [54] present a language with effect handlers, where effect operations are
used by invoking methods on capabilities. In a similar vein, Biernacki et al. [5] present a
language with effect handlers where they track the use of effect instances in the type of
functions. Their type- and effect systems guarantee effect safety by tracking the use of
capabilities. However, they establish effect safety by means of traditional effect systems and
do not have a notion of second-class values. Instead they directly support parametric effect
polymorphism. Every function, even if it is only used in a second-class way, carries effect
information whereas in our language System C this information only becomes visible when
functions are made first-class.

Crary et al. [15] present a language with a type system that statically tracks capabilities.

Their motivation is to make region-based memory management safe. The underlying problem
they solve is similar to ours: we want to make sure that capabilities are only used when they
are still valid. They have a separate notion of regions, while in System C tracked variables
serve the dual purpose of regions and handles, depending on whether they appear as terms
or in types. When viewed like this, their system becomes similar to ours. Again, the key
benefit of System C is that no type-level region information is needed for variables that follow
a stack discipline.

6.7 Effect Systems and Type-Based Reasoning

In Sections 1.1 and 2.2 we compared with various related work on effect systems that feature
type-based reasoning. Those systems [29, 54, 5, 33] typically support effect polymorphism in
terms of abstraction and application of effect variables. In contrast, System C features two
modes of operation, first- and second-class, mediated by boxing and unboxing. In second-class
mode, we fully avoid the ceremony of parametric effect polymorphism. However, System C

29

TR 2022

30

Effects, Capabilities, and Boxes

does not improve the verbosity of type-based reasoning with first-class values, which is
comparable to existing solutions. Importantly, transitioning to type-based reasoning is
performed selectively and details are only exposed when necessary.

6.8 Call-by-Push-Value

Levy [30] presents call-by-push-value (CBPV) as a paradigm that subsumes call-by-value and
call-by-name. CBPV distinguishes between values (denoted A) and computations (denoted
B) on the type-level. Value types can be embedded into computation types with a type
constructor F' A and computation types can be embedded into value types with a type
constructor U B.

Similarities By presenting System C in fine-grain call-by-value, we also distinguish pure
expressions from side-effecting computations. We furthermore separate computation into the
separate syntactic categories of statements and blocks. Figure 7 in Appendix A.5 should
serve as a guide for readers familiar with CBPV. On the type level all System C statements
can be thought of as typed against a computation type F' [7]. Ignoring our addition of
capabilities C, the typing rules for returning and sequencing computation align with those of
CBPYV. The typing judgements of boxing and unboxing, which correspond to thunking and
forcing in CBPV, also align.

Differences Despite some similarity, there are important differences between System C and
CBPV. The mapping of System C to CBVP is not complete. In particular, CBPV does
not support abstraction over computation and its functions can only be applied to values,
not computations. That is, there are no equivalents of block variables, block abstraction,
and block application in CBPV. Furthermore, there are CBPV programs which are not
expressible in System C. For example, CBPV functions have the general shape of A — B
and can result in further computation, which is not possible in System C. We accommodate
the typical use case of this feature by generalizing to multi-arity functions. In CBPV term
abstraction by itself does not delay computation, but merely requires an argument to be
on top of the stack. For example, in CBPV, the following two programs are semantically
equivalent:

Mtozin(Ay N) = Ay (MtozinN)} wherey & fu(M)

Both programs are computations of function type A — B and expect a value (y: A) to be
on the top of the stack when executed. In System C a program corresponding to the first
one would not be syntactically correct, as blocks (computations of function type) cannot be
returned without boxing. Since in System C, blocks already delay computation, we repurpose
the thunking / boxing construct to delay the effect of “mentioning a tracked variable”. We
leave a full formal comparison of System C and CBPV to future work.

7 Conclusion

In this paper, we presented System C, in which natural scope-based reasoning and precise
type-based reasoning can co-exist and programmers can switch between the two. Capabilities
and blocks let us assign simple types to common definitions, while boxed blocks allow us
to circumvent typical limitations of second-class values and let us be precise in signatures
where necessary. System C integrates well with languages with advanced control flow, as
witnessed by our implementation of effect handlers. Our system is sound as well, as evidenced

REFERENCES

by the proof mechanized in Coq. We studied System C as an alternative effect system for
capability-based lexical effects. However, the design might also be interesting for languages
with simple control effects (like exceptions) or region-based resource management. In the
future, to remove the burden of explicitly passing capabilities we would like to investigate
effect inference.

Acknowledgments

The work on this project was supported by the Deutsche Forschungsgemeinschaft (DFG —
German Research Foundation) — project number DFG-448316946.

References

1

2

10

11

12

D. Ahman and M. Pretnar. Asynchronous effects. Proc. ACM Program. Lang., 5(POPL),
Jan. 2021. doi: 10.1145/3434305. URL https://doi.org/10.1145/3434305.

B. Aydemir, A. Charguéraud, B. C. Pierce, R. Pollack, and S. Weirich. Engineering
formal metatheory. In Proceedings of the Symposium on Principles of Programming
Languages, pages 3—-15, New York, NY, USA, 2008. ACM. doi: http://doi.acm.org/10.
1145/1328438.1328443.

H. P. Barendregt. Lambda calculi with types. In Handbook of Logic in Computer Science
(vol. 2): Background: Computational Structures, pages 117-309. Oxford University Press,
New York, NY, USA, 1992.

Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Development,
Coq’Art:The Calculus of Inductive Constructions. Springer-Verlag, 2004.

D. Biernacki, M. Pirég, P. Polesiuk, and F. Sieczkowski. Binders by day, labels by night:
Effect instances via lexically scoped handlers. Proc. ACM Program. Lang., 4(POPL),
Dec. 2019. doi: 10.1145/3371116.

J. I. Brachthéuser and P. Schuster. Effekt: Extensible algebraic effects in Scala (short
paper). In Proceedings of the International Symposium on Scala, New York, NY, USA,
2017. ACM. doi: 10.1145/3136000.3136007.

J. 1. Brachthéuser, P. Schuster, and K. Ostermann. Effect handlers for the masses.
Proc. ACM Program. Lang., 2(O0PSLA):111:1-111:27, Oct. 2018. ISSN 2475-1421. doi:
10.1145/3276481.

J. I. Brachthduser, P. Schuster, and K. Ostermann. Effekt: Capability-passing style
for type- and effect-safe, extensible effect handlers in Scala. Journal of Functional
Programming, 2020. doi: 10.1017/50956796820000027.

J. I. Brachthéuser, P. Schuster, and K. Ostermann. Effects as capabilities: Effect handlers
and lightweight effect polymorphism. Proc. ACM Program. Lang., 4(OOPSLA), Nov.
2020. doi: 10.1145/3428194.

J. I. Brachthéuser, P. Schuster, E. Lee, and B.-G. Aleksander. Effects, capabilities,
and boxes: From scope-based reasoning to type-based reasoning and back. Extended

technical report, University of Tiibingen, Germany, 2022. https://se.informatik.

uni-tuebingen.de/publications/brachthaeuser22effects.

J. I. Brachthéduser and D. Leijen. Programming with implicit values, functions, and
control. Technical Report MSR-TR-~2019-7, Microsoft Research, 2019.

V. Choudhury and N. Krishnaswami. Recovering purity with comonads and capabilities.
Proc. ACM Program. Lang., 4(ICFP), Aug. 2020. doi: 10.1145/3408993. URL https:
//doi.org/10.1145/3408993.

31

TR 2022

https://doi.org/10.1145/3434305
https://se.informatik.uni-tuebingen.de/publications/brachthaeuser22effects
https://se.informatik.uni-tuebingen.de/publications/brachthaeuser22effects
https://doi.org/10.1145/3408993
https://doi.org/10.1145/3408993

32

REFERENCES

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

M. Coblenz, J. Sunshine, J. Aldrich, B. Myers, S. Weber, and F. Shull. Exploring
language support for immutability. In 2016 IEEE/ACM 38th International Conference
on Software Engineering (ICSE), pages 736-747. IEEE, 2016.

W. R. Cook. On understanding data abstraction, revisited. In Proceedings of the
Conference on Object-Oriented Programming, Systems, Languages and Applications,
pages 557-572, New York, NY, USA, 2009. ACM.

K. Crary, D. Walker, and G. Morrisett. Typed memory management in a calculus
of capabilities. In Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’99, page 262-275, New York, NY, USA,
1999. Association for Computing Machinery. ISBN 1581130953. doi: 10.1145/292540.
292564.

J. B. Dennis and E. C. Van Horn. Programming semantics for multiprogrammed
computations. Commun. ACM, 9(3):143-155, Mar. 1966. ISSN 0001-0782.

S. Dolan, S. Eliopoulos, D. Hillerstrom, A. Madhavapeddy, K. Sivaramakrishnan, and
L. White. Effectively tackling the awkward squad. In ML Workshop, 2017.

R. K. Dybvig, S. L. Peyton Jones, and A. Sabry. A monadic framework for delimited
continuations. Journal of Functional Programming, 17(6):687-730, 2007.

M. Felleisen. The theory and practice of first-class prompts. In Proceedings of the
Symposium on Principles of Programming Languages, pages 180-190, New York, NY,
USA, 1988. ACM.

M. Gaboardi, S.-y. Katsumata, D. Orchard, F. Breuvart, and T. Uustalu. Combining
effects and coeffects via grading. In Proceedings of the 21st ACM SIGPLAN International
Conference on Functional Programming, ICEP 2016, page 476-489, New York, NY, USA,
2016. Association for Computing Machinery. ISBN 9781450342193. doi: 10.1145/2951913.
2951939. URL https://doi.org/10.1145/2951913.2951939.

C. S. Gordon. Designing with Static Capabilities and Effects: Use, Mention, and
Invariants (Pearl). In R. Hirschfeld and T. Pape, editors, 34th European Conference
on Object-Oriented Programming (ECOOP 2020), volume 166 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 10:1-10:25, Dagstuhl, Germany, 2020. Schloss
Dagstuhl-Leibniz-Zentrum fiir Informatik. ISBN 978-3-95977-154-2. doi: 10.4230/LIPIcs.
ECOOP.2020.10. URL https://drops.dagstuhl.de/opus/volltexte/2020/13167.
C. A. Gunter, D. Rémy, and J. G. Riecke. A generalization of exceptions and control
in ML-like languages. In Proceedings of the Conference on Functional Programming
Languages and Computer Architecture, pages 12-23, New York, NY, USA, 1995. ACM.
J. Hannan. A type-based escape analysis for functional languages. Journal of Functional
Programming, 8(3):239-273, May 1998.

D. Hillerstréom, S. Lindley, and R. Atkey. Effect handlers via generalised continuations.
Journal of Functional Programming, 30:e5, 2020. doi: 10.1017/S0956796820000040.

0. Kiselyov, C.-c. Shan, and A. Sabry. Delimited dynamic binding. In Proceedings of the
International Conference on Functional Programming, pages 26-37, New York, NY, USA,
2006. ACM.

D. Leijen. Extensible records with scoped labels. In Proceedings of the Symposium on
Trends in Functional Programming, pages 297-312, 2005.

D. Leijen. Koka: Programming with row polymorphic effect types. In Proceedings of the
Workshop on Mathematically Structured Functional Programming, 2014.

D. Leijen. Structured asynchrony with algebraic effects. In Proceedings of the Workshop
on Type-Driven Development, pages 16-29, New York, NY, USA, 2017. ACM.

https://doi.org/10.1145/2951913.2951939
https://drops.dagstuhl.de/opus/volltexte/2020/13167

REFERENCES

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

D. Leijen. Type directed compilation of row-typed algebraic effects. In Proceedings of
the Symposium on Principles of Programming Languages, pages 486-499, New York, NY,
USA, 2017. ACM.

P. B. Levy. Call-by-push-value: A subsuming paradigm. In J.-Y. Girard, editor, Typed
Lambda Calculi and Applications, pages 228-243, Berlin, Heidelberg, 1999. Springer
Berlin Heidelberg. ISBN 978-3-540-48959-7.

P. B. Levy, J. Power, and H. Thielecke. Modelling environments in call-by-value pro-
gramming languages. Information and Computation, 185(2):182-210, 2003.

S. Lindley. Encapsulating effects. Dagstuhl Reports, 8(4), 2018.

S. Lindley, C. McBride, and C. McLaughlin. Do be do be do. In Proceedings of the
Symposium on Principles of Programming Languages, pages 500-514, New York, NY,
USA, 2017. ACM.

J. M. Lucassen and D. K. Gifford. Polymorphic effect systems. In Proceedings of
the Symposium on Principles of Programming Languages, POPL ’88, page 47-57, New
York, NY, USA, 1988. Association for Computing Machinery. ISBN 0897912527. doi:
10.1145/73560.73564. URL https://doi.org/10.1145/73560.73564.

D. Melicher, Y. Shi, A. Potanin, and J. Aldrich. A capability-based module system
for authority control. In 31st European Conference on Object-Oriented Programming
(ECOOP 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

M. S. Miller. Robust Composition: Towards a Unified Approach to Access Control and
Concurrency Control. PhD thesis, Johns Hopkins University, Baltimore, Maryland, USA,
2006. AAI3245526.

A. Nanevski, F. Pfenning, and B. Pientka. Contextual modal type theory. ACM Trans.
Comput. Logic, 9(3), June 2008. ISSN 1529-3785. doi: 10.1145/1352582.1352591. URL
https://doi.org/10.1145/1352582.1352591.

F. Nielson, H. R. Nielson, and C. Hankin. Type and effect systems. In Principles of
Program Analysis, pages 283-363. Springer, 1999.

M. Odersky, A. Boruch-Gruszecki, J. I. Brachthduser, E. Lee, and O. Lhotdk. Safer
exceptions for scala. In Proceedings of the 12th ACM SIGPLAN International Symposium
on Scala, SCALA 2021, page 1-11, New York, NY, USA, 2021. Association for Computing
Machinery. doi: 10.1145/3486610.3486893.

L. Osvald and T. Rompf. Rust-like borrowing with 2nd-class values (short paper). In
Proceedings of the 8th ACM SIGPLAN International Symposium on Scala, SCALA
2017, page 13-17, New York, NY, USA, 2017. Association for Computing Machinery.
ISBN 9781450355292. doi: 10.1145/3136000.3136010. URL https://doi.org/10.1145/
3136000.3136010.

L. Osvald, G. Essertel, X. Wu, L. I. G. Alayén, and T. Rompf. Gentrification gone too
far? affordable 2nd-class values for fun and (co-) effect. In Proceedings of the Conference
on Object-Oriented Programming, Systems, Languages and Applications, pages 234-251,
New York, NY, USA, 2016. ACM.

T. Petricek, D. Orchard, and A. Mycroft. Coeffects: A calculus of context-dependent
computation. In Proceedings of the International Conference on Functional Programming,
page 123-135, New York, NY, USA, 2014. ACM. doi: 10.1145/2628136.2628160. URL
https://doi.org/10.1145/2628136.2628160.

G. Plotkin and J. Power. Algebraic operations and generic effects. Applied Categorical
Structures, 11(1):69-94, 2003.

G. Plotkin and M. Pretnar. Handlers of algebraic effects. In Furopean Symposium on
Programming, pages 80-94. Springer-Verlag, 2009.

33

TR 2022

https://doi.org/10.1145/73560.73564
https://doi.org/10.1145/1352582.1352591
https://doi.org/10.1145/3136000.3136010
https://doi.org/10.1145/3136000.3136010
https://doi.org/10.1145/2628136.2628160

34

REFERENCES

45

46

47

48

49

50

51

52

53

54

55

56

57

G. D. Plotkin and M. Pretnar. Handling algebraic effects. Logical Methods in Computer
Science, 9(4), 2013.

M. Pretnar. An introduction to algebraic effects and handlers. invited tutorial paper.
Electronic Notes in Theoretical Computer Science, 319:19-35, 2015.

J. C. Reynolds. Definitional interpreters for higher-order programming languages. In
Proceedings of the ACM annual conference, pages 717-740, New York, NY, USA, 1972.
ACM.

L. Rytz, M. Odersky, and P. Haller. Lightweight polymorphic effects. In J. Noble, editor,
Proceedings of the European Conference on Object-Oriented Programming, pages 258-282,
Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

G. Scherer and J. Hoffmann. Tracking data-flow with open closure types. In K. McMillan,
A. Middeldorp, and A. Voronkov, editors, Logic for Programming, Artificial Intelligence,
and Reasoning, pages 710-726, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.
ISBN 978-3-642-45221-5.

D. Sitaram. Handling control. In Proceedings of the Conference on Programming Language

Design and Implementation, pages 147-155, New York, NY, USA, 1993. ACM.

M. Tofte and J.-P. Talpin. Region-based memory management. Inf. Comput., 132(2):
109-176, Feb. 1997. ISSN 0890-5401. doi: 10.1006/inco.1996.2613.

A. K. Wright and M. Felleisen. A syntactic approach to type soundness. Inf. Comput.,
115(1):38-94, Nov. 1994.

N. Xie, J. I. Brachthduser, D. Hillerstroém, P. Schuster, and D. Leijen. Effect handlers,
evidently. Proc. ACM Program. Lang., 4(ICFP), Aug. 2020. doi: 10.1145/3408981.

Y. Zhang and A. C. Myers. Abstraction-safe effect handlers via tunneling. Proc. ACM
Program. Lang., 3(POPL):5:1-5:29, Jan. 2019. ISSN 2475-1421.

Y. Zhang, G. Salvaneschi, Q. Beightol, B. Liskov, and A. C. Myers. Accepting blame for
safe tunneled exceptions. In Proceedings of the Conference on Programming Language
Design and Implementation, pages 281-295, New York, NY, USA, 2016. ACM.

Y. Zhang, G. Salvaneschi, and A. C. Myers. Handling bidirectional control flow. Proc.
ACM Program. Lang., 4(OOPSLA), Nov. 2020. doi: 10.1145/3428207. URL https:
//doi.org/10.1145/3428207.

N. Zyuzin and A. Nanevski. Contextual modal types for algebraic effects and handlers.
Proc. ACM Program. Lang., 5(ICFP), Aug. 2021. doi: 10.1145/3473580. URL https:
//doi.org/10.1145/3473580.

https://doi.org/10.1145/3428207
https://doi.org/10.1145/3428207
https://doi.org/10.1145/3473580
https://doi.org/10.1145/3473580

REFERENCES

A Appendix
A.1 Well-formedness of Capability Sets

Capability sets can only contain tracked block variables, which is captured by the following
well-formedness rules.

r 0 wf

35

f o el T C1 wf r C2 wf

r {f} wf Tr C1 UCe uf

A.2 Full Operational Semantics

Here, we fill in missing details of our description of the operational semantics. For easier
reference, Figure 5a repeats the extended syntax.

A.2.1 Definition of Values, Evaluation Contexts, and Statement
Congruence

Figure 5b repeats the reduction rules and defines evaluation contexts E and H; as well as the
congruence rule for statements o o'. Expression values v include primitive constants and
boxed block values w. The latter is a significant difference to the presentation by Brachthéuser
et al. [9], where blocks were second class and could never be returned or stored in data
structures. In contrast, in System C, blocks can be boxed and then treated as first-class
expression values. Block values w are either block literals or capabilities.

A.2.2 Additional Typing Rules

We also extend the static typing rules to cover the new additional runtime constructs
introduced by the operational semantics and prove progress and preservation for the extended
calculus.

Figure 5c¢ extends the typing rules for System C with two additional rules. Rule CAP is
very similar to rule TRACKED and checks capabilities simply by looking up their signature in
the global signature context =. Similarly to rule TRACKED, we require that f is compatible
with the current context restriction. Rule RESET is very similar to rule TRY. Since the
capability has been substituted by rule (¢ry), we only have to establish that the handled
statement type checks under restriction C U {l}. The premise for checking the handler is
exactly the one of TRyY. Finally, we should explicitly note that the static typing rules for
boxing and unboxing—BOXINTRO and BOXELIM—now additionally reifiy runtime labels
into the type system and check to ensure that any runtime labels are present in the current
environment restriction when unboxing values to ensure that the value itself may be safely
unboxed.

TR 2022

36 REFERENCES

Extented Syntax for Operational Semantics:

Runtime Labels l Q@a5f | @4ba | ... labels
Runtime Statements s v | 1 { s} with { (7, k) = sdplimiters
Runtime Blocks b ... | cap, capabilities
Runtime CapabilitiesC 1 H{l label sets
Runtime Signatures = 0= I: Ti — To label context

(a) Extended Syntax of System C.

Definition of Values:

Expression Values v () 10 |1 |.. |true |false | ... |box w
Block Values w { (@i 74 fj: 05) = s} |cap,

Evaluation Contexts:
Contexts E Olvalz = E; s #, { E}with { (z, k) = s }

Delimited Contexts H; O val z Hi s | #u {H }with { (z;, k) = s} wherel # 1

Reduction Rules:

(boz) unbox (box b) b

(val) val z = return v; s s[z — v)

(def) def f = w; s s[f — w)]

(ret) #; { return v } with h v

(app) ({ (@i, £;) = s (v, w) slai = v, ;5 €y Ji o w
where 0 - w; : o; 1 C;

(try) try {f = s}with{ (7, k)= } #1{ s[f = {l}, f— cap)] } with { (z;, k) = ¢ }
where | ¢ dom =, and f Ti — To, then Z(I) := Ti — To

(cap) #:{ Hi[cap,(v;)] } with h sz = vi, k— { y = #: { Hifreturn y] } with h }]

where h = { (7, k) = s }

Congruences:

(cong) If s s' then E[s] E[s']

(b) Operational semantics of System C — we omit trivial congruences for expressions and blocks.

l: T, > 719 €8 T S1 71 C U{l}
[cap] I, Tt 70, k€ 7057+ s - 71 C
r #i{s ywith{(z, k)= s} 7

l: ﬁ—)To €=

T cap, : 7. — 7o | {I} [RESET]

(c) Static semantics of runtime constructs.

Figure 5 Full description of the operational semantics of the language System C.

REFERENCES

A.3 Proof that Labels are Delimited

The following rules define the auxiliary typing of evaluation contexts E 7721 C
as used in Lemma 4.

[CTop] E T2 T1C T T S T2
Ejvalz = 0O; 8] : 71—~ 71 C

O T TI0 [Cvar]

l: 7, > 79 €2 E 7. -1 C ¢ cc
T ki 10— T s 111 C
E[#, {0} with { (zi, &) =s})] : 71— 721 C U{l}

[CREsET]

Here, 71 is the type at the hole and 75 is the overall return type of the resulting statement.
Importantly, the capability set C can be thought of as an output of the relation. It represents
the restriction under which the hole can be type checked, that is, it contains all labels that
are delimited by the context.

Proof of Lemma 4. Similar to how an abstract machine would unwind the stack frame-by-
frame, the proof proceeds by induction over the typing derivation of the context. The cases
for val-frames, and delimiters are straightforward. Only the case for the empty context is

interesting. From I’ cap,(v;) - 7 | C, we know that [€ C. However, context typing
of the empty context only admits an empty restriction (that is, C = (}), which leads to a
contradiction. |

A.4 Abstract Machine Semantics

Our mechanization in Coq deviates from the presentation in Section 4.4. Instead of building
the operational semantics on evaluation contexts, we model the semantics in terms of an
substitution-based abstract machine.

Figure 6 presents this version of the operational semantics in terms of an abstract machine,
very similar to the presentation by Hillerstrom et al. [24]. Machine states are triples of the
form (s |E 1Z), where E are stacks. We reuse the definition of evaluation contexts in
Figure 3b but, for pushing stack frames, write val = [J; s:: E instead of E[val z = O; s
to highlight the nature of the stack. The machine can be in one of two states:

(1) Reduction Mode States of the form (s |1E IE) are used to perform standard machine
reductions. Similar to the presentation by Dybvig et al. [18], the last component of the
machine state = is used as a source for fresh labels. However, like in our presentation of the
semantics in Section 4.4, it also maps labels to effect signatures at runtime, necessary to
establish type preservation. Standard reductions include reductions that can be performed
without affecting the machine state (rule (cong)). Again, we omit the trivial congruence
rules for blocks and expressions. Rules (pop), (ret), (push), and (reset) perform the standard
reductions of pushing and popping frames of the stack.

(2) Search Mode 1In contrast, states of the form ([s 1E oE’ |2) are used to model the
search for a delimiter. Here E’ is the captured continuation and E is the remainder of the
stack that the search continues on. The notation E o E’ suggests that we can compose the
two stacks E[E’] to obtain the original stack before the search for a delimiter started. Rule
(cap) marks the transition from standard machine reductions to the search for a delimiter for
I. Rules (unwind) and (forward) stepwise unwind the stack if the top-most frame is either a

37

TR 2022

38 REFERENCES

Reduction without context:

(def) def f = w; s sif — w]
(app) ({ (zi, fi) = s })(vi, wy) slzi = vi, fj > Cjy fj > w] where 00 w; - 0j 1 Cj
(boz) unbox (box b) b
Machine reductions:
Standard Machine Reductions
(cong) s EE2 s 1E =2 if s s
(pop) return v valz = O; s:: E 12 slr— v E IE
(ret) returnv | #, {0} withh:: E 12 return v |[E 12
(push) valz = s1; s2 1E 12 s1 lvalz = O; s E 12
(reset) #:{s}twithh E = st #{0}withh:: E 1E
Installing Effect Handlers
(try) try {f= s }withh E 2
siff = cap, f—={}] # {0O}withh:: EZ, 1 : 7 =7
where | ¢ dom = and f Ti—=T
Handling Effect Operations
(cap) cap,(v) 1E 12 cap,(v) 'E oOIE
(unwind) (cap,(v) I(valz = O; s:: E) oE' |2 cap,(v) IE o(valz = E'; s) 1E
(forward) (cap,(v) I (#, {0} withh:: E) oE I1E cap,(v) 'E o (#, { E' } with h)
where | # I

(handle) (cap,(v) | (#, {0} with h:: E) oFE' IE
sfzi vi, k= {y=# {E'[y] } with h }] 1E
where h = { (7, k) = s}

[1]

Figure 6 Mechanized abstract machine semantics of System C.

val-frame or the wrong delimiter, correspondingly. Finally, rule (handle) marks the transition

back to standard machine reductions.

=
=

REFERENCES 39

Mapping Types:

Value Types Computation Types
[Int] ~ Int [(7)) = 7] ~ [10]l=> ..o [m] = F 7]
[oatC] ~ UJlo]
Value Typing Computation Typing
[T e 7] = [T [e]:[7][T s 71 CR [T]TF [s]: F[7]
[T b o1 Ck [T F[b] o]

Mapping Terms:

Value Terms Computation Terms

[box b] ~ thunk [b | valz = s0; s1] = [so|tozin]| s]

[n] ~ n return e ~ produce [e]

[] ~ o [b(e)] ~ [e] (. (Teol [0])
[unbox e | ~ force [¢ |
{(@m 7)) =8} =~ Amy ... \zy [5]

Figure 7 Mapping concepts from System C to CBPV. The correspondence should only serve as
an intuition and still needs to be established formally.

A.5 Call-By-Push-Value

For easier comparison, here we repeat some typing rules for CBPV [30]. Value types can
be embedded into computation types by means of a type constructor ' A. On the term-
level, CBPV features the following rules to embed values in computation and to sequence
computation:

T v:A r=M™M::FA z: A N : B
I' ¢ produce V : F A ' = MtozinN : B

Symmetrically, computation types can be embedded into value types using type constructor
U B. Again, on the term-level CBPV features the following two constructs:
' M : B r~ Vv :UB
I'' v thunk V : UB I' ¢ force V: B

Figure 7 serves as a guide for readers familiar with call-by-push-value.

TR 2022

	1 Introduction
	1.1 Effect Systems and Type-Based Reasoning
	1.2 Effects as Capabilities and Scope-Based Reasoning
	1.3 Explicit Boxing – From Scope-Based to Type-Based Reasoning and Back
	1.4 Contributions and Overview

	2 Motivation
	2.1 Lexical Reasoning
	2.2 Effect Safety
	2.3 Ergonomics
	2.4 First-Class Functions
	2.5 The Best of Both Worlds

	3 Programming with System C
	3.1 Capabilities
	3.2 Boxes
	3.2.1 Local Capabilities
	3.2.2 From Scope-Based Reasoning to Type-Based Reasoning and Back
	3.2.3 Capability Polymorphism

	3.3 Effect Handlers in SystemC
	3.4 Conclusion

	4 Formal Presentation
	4.1 Syntax
	4.1.1 Expressions
	4.1.2 Blocks
	4.1.3 Statements
	4.1.4 Types
	4.1.5 Environments

	4.2 Surface Syntax
	4.3 Typing
	4.3.1 Block Typing
	4.3.2 Expression Typing
	4.3.3 Statement Typing

	4.4 Operational Semantics
	4.5 Safety
	4.5.1 Progress
	4.5.2 Preservation
	4.5.3 Effect Safety
	4.5.4 Mechanization

	5 Discussion of Language Extensions
	5.1 Parametric Type Polymorphism
	5.2 Mutable State
	5.3 Type- and Capability Inference
	5.4 Effect Handlers and Object-Oriented Programming

	6 Related Work
	6.1 Capability-Based Systems
	6.2 Representing Closure in Types
	6.3 Comonadic Type Systems
	6.4 Contextual Modal Types
	6.5 Coeffect-Based Systems
	6.6 Effect-Based Systems with Capabilities
	6.7 Effect Systems and Type-Based Reasoning
	6.8 Call-by-Push-Value

	7 Conclusion
	A Appendix
	A.1 Well-formedness of Capability Sets
	A.2 Full Operational Semantics
	A.2.1 Definition of Values, Evaluation Contexts, and Statement Congruence
	A.2.2 Additional Typing Rules

	A.3 Proof that Labels are Delimited
	A.4 Abstract Machine Semantics
	A.5 Call-By-Push-Value

