
Representing Monads with Capabilities
Jonathan Immanuel Brachthäuser
EPFL, Switzerland

Aleksander Boruch-Gruszecki
EPFL, Switzerland

Martin Odersky
EPFL, Switzerland

Abstract
Programming with monads can be advantageous even in imperative languages with builtin support for
side effects. However, in these languages composing monadic programs is different from composing
side effecting imperative programs. This does not need to be the case, as already noticed by
Filinski [1994]. We revive the well-known technique of monadic reflection in the context of modern
programming languages with support for fibers, generators, or coroutines. In particular, we show
how (layered) monadic reflection can be implemented in a stack safe manner and how effect safety
can conveniently be approximated by capability passing.

Comments This is a talk proposal, accompanying our talk at the Workshop on Higher-order Programming with
Effects (HOPE 2021).

Prelude

In his seminal paper on functional programming with monads, Wadler [14] asks

Shall I be pure or impure?

A question that divided programming languages (and communities) back then and still does
to the current day.

In his foundational work, Filinski [6] notices that

It is somewhat remarkable that monads have had no comparable impact on “impure”
functional programming.

In an attempt to close the gap between imperative and functional programming, Filinski
presents the technique of monadic reflection. If a language has support for composable
contuations (such as offered by the control operators shift/reset [4]), then it can represent
arbitrary control effects – a fact that earned the CPS monad the title “Mother of All Monads”.
Given composable continuations, Filinski shows that it is possible to define the two operators
reflect (i.e., µ( · )) and reify (i.e., [ · ]):

Γ ⊢ E : T α

Γ ⊢ µ(E) : α
[reflect]

Γ ⊢ E : α

Γ ⊢ [ E ] : T α
[reify]

For some monadic type constructor T , reflecting allows embedding a monadic computation
of type T α into the current computation. Dually, reifying allows programmers to make the
monadic structure of a computation explicit.

Monadic Reflection, Today

Monadic reflection is potentially more relevant than ever. Firstly, while monads do allow
programming with and reasoning about effects in pure programming languages, they did
not resolve the divide between functional and imperative programming. Quite the contrary,
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as can be observed in strongly typed (impure) languages like Scala: even though Scala
natively supports effects, programmers fall back to writing in monadic style in order to
reason about effectful programs as referentially transparent values. Notably, monadic style
prevents programmers to directly use built-in mechanimns to structure the control flow, such
as imperative sequencing (i.e., ;), loops, exceptions, and existing higher-order functions (e.g.,
map or foreach). Secondly, while to the current day only a few languages support delimited
control operators like shift/reset, as required by Filinski, more and more languages are
equipped with alternative features to structure non-local control flow, such as generators [12],
async/await [1], coroutines [9], or fibers [5, 13]. As shown by James and Sabry [8], many of
these constructs can be used to encode delimited control operators. Maybe unsurprisingly,
languages like JavaScript, Python, C#, and JVM languages (like Java, Scala, etc.) thus
already provide the necessary means to implement monadic reflection.

Shall I be pure or impure? Why not both?

While being an important theoretical result, we believe the practical implications of the work
by Filinski [6] are severly underrecognized. Monadic reflection equips programmers with a
tool to seamlessly switch between imperative programming (using all existing mechanisms
to structure control flow) and monadic programming (reifying computation to reason with
referential transparency). In this talk, we follow Filinski and take the position that instead of
improving the support for programming with monadic values (such as do-notion), imperative
programming constructs should be used to construct effectful programs, only reifying the
monad when necessary (for instance for non-standard composition of effectful programs). To
demonstrate the practicality of monadic reflection, we combine the work of Filinski and James
and Sabry and show how fibers [13] can be used to implement (layered) monadic reflection [7]
as a library in the Scala 3 language. Our implementation is a proof of concept, suggesting
that monadic reflect is readily available in languages with support for fibers, generators,
or async/await. The library can immediately be used in the context of existing functional
programming ecosystems such as scala cats1, scalaz2, or ZIO3, replacing convoluted monadic
composition via for-comprehensions with direct-style code.

Capability-Based Monadic Reflection

Filinski [7] already remarks that

a type system for actually enforcing the effect-restrictions statically would be a big
help in constructing large programs. [. . . ] it should also include support for some
notion of effect-polymorphism.

With its support for contextual abstractions4, Scala 3 provides an approximate, yet convenient
alternative to an effect system [10, 2]. For example, the context function type Eff ?⇒ Res
denotes values of type Res that can only be used in contexts where an implicit Eff is in
scope. We often refer to values of type Eff as capabilities since they can be seen as the
constructive proof that a holder is entitled to perform actions on Eff. It has been shown

1 https://typelevel.org/cats/
2 https://scalaz.github.io/7/
3 https://zio.dev/
4 Contextual abstractions were formerly known as implicits.

https://typelevel.org/cats/
https://scalaz.github.io/7/
https://zio.dev/
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trait Reflect[M[_]] { def reflect[A](ma: M[A]): A }
def reify[M[_]: Monadic, A](

prog: Reflect[M] ?⇒ A
): M[A]

trait Monadic[M[_]] {
def pure[A](a: A): M[A]
def sequence[X, R](mx: M[X])(

f: X ⇒ Either[M[X], M[R]]): M[R]
}

Figure 1 Interface for capability-based layered monadic reflection in Scala 3. To reify a com-
putation for a type constructor M, an implementation of the type class Monadic[M] is necessary.
The method seq is a stack-safe variant of traditional monadic composition. Reifying a monad M
introduces a capability Reflect[M] that can be used to reflect computation of type M[A].

that basing effect systems on capabilities opens up interesting and light-weight forms of effect
polymorphism [11, 3].

In our implementation of monadic reflection (summarized in Figure ??), we make use of
contextual function types in the following way. Reifying a monadic computation of the type
constructor M[_] introduces an implicit capability Reflect[M] in the scope of the reified
computation. Within that scope, the capability can be used to reflect values of type M[A].
The following example uses monadic reflection to express errors in the Option monad.

def abort[A]()(using r: Reflect[Option]): A =
r.reflect(None)

def safeDiv(x: Int, y: Int)(using Reflect[Option]): Int =
if (y == 0) abort() else x / y

reify[Option, Int] {
safeDiv(4, 0) + safeDiv(5, 0)

}

Calling the function abort requires an implicit instance of Reflect[Option] to be available
at the callsite. On the other side, as becomes visible in the type signature of reify (Figure ??),
calling reify[M, A] brings such an implicit instance of type Reflect[M] into scope.

Representing Layered Monads via Multiple Prompts

The implementation of fibers in Project Loom [13] allows labeling individual fibers with
what could be seen as prompts. When yielding, we can choose which prompt to suspend to.
This native support for multi-prompt delmited control immediately gives rise to an efficient
implementation of layered monadic reflection [7]. Calls to reify can be nested, introducing
seperate capabilities. Calling reflect on a capability will immediately transfer control to
the correct reify call. This is illustrated in the combined use of Option and Future:

def read(f: String)(using r: Reflect[Future]): Source =
r.reflect(Future { Source.fromFile(f) })

reify[Option, Int] {
Await.result(reify[Future, Int] {

read("test.txt").size + safeDiv(5, 0)
}, 100 milliseconds)

}
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