
Effekt: Lightweight Effect Polymorphism for
Handlers
Jonathan Immanuel Brachthäuser
University of Tübingen, Germany

Philipp Schuster
University of Tübingen, Germany

Klaus Ostermann
University of Tübingen, Germany

Abstract
Effect handlers have recently gained popularity amongst programming language researchers. Existing
type- and effect systems for effect handlers are often complicated and potentially hinder a wide-spread
adoption. We present the language Effekt with the goal to close the gap between research languages
with effect handlers and languages for working programmers. The design of Effekt revolves around
a different view of effects and effect types. Traditionally, effect types express which side effects a
computation might have. In Effekt, effect types express which capabilities a computation requires
from its context. While this new point in the design space of effect systems impedes reasoning about
purity, we demonstrate that it simplifies the treatment of effect polymorphism and the related issues
of effect parametricity and effect encapsulation. To guarantee effect safety, we separate functions
from values and treat all functions as second-class. We define the semantics of Effekt as a translation
to System Ξ, a calculus in explicit capability-passing style.

First Published October, 18th 2020
URL https://se.informatik.uni-tuebingen.de/publications/brachthaeuser20effekt

Main Reference Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann. 2020. “Effects as
capabilities: effect handlers and lightweight effect polymorphism.” Proceedings of the ACM on
Programming Languages 4. OOPSLA (2020): 1–30. https://doi.org/10.1145/3428194

Comments This is an extended version of the main reference. Compared to the published paper, this report
contains the full operational semantics of System Ξ, typing rules for the extended runtime
semantics, and more details on our soundness proof (see Appendix A).

1 Introduction

Effects and handlers [44] have become quite popular in programming language research,
recently. Effectful expressions are expressions that depend on or modify the context they are
evaluated in [53]. Effect systems extend the guarantees of programming languages from type
safety to effect safety: all effects (e.g., exceptions) are eventually handled, and they are not
accidentally handled by the wrong handler. Effect handlers allow novel ways to structure
effectful programs as reusable libraries [44], while guaranteeing effect safety and enabling
equational reasoning with effect parametricity [57].

A well-known downside of current languages with effect handlers is that, arguably, their
semantics (both dynamic and static) is too complicated to be put into practical use at scale.
To guarantee effect safety, existing implementations incorporate sophisticated type- and
effect systems. To master these effect systems, programmers need to study the corresponding
languages intensively. The combination of effects with higher-order functions requires support
for effect polymorphism – a delicate feature, which is particularly difficult to understand and
reason about, as witnessed by recent publications [57, 7, 11]. Some languages (Frank [36],
Koka [32], and Helium [7]) attempt to hide effect polymorphism behind syntactic sugar.
However, this masquerade often breaks down in more sophisticated use cases and details of
effect polymorphism leak to the startled user.

In this paper, we take a radically different view on effect systems for languages with effect
handlers. Traditionally, effect types express which side effects a computation might have,

Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann. “Effekt: Lightweight Effect Polymor-
phism for Handlers”. Technical Report. 2020. University of Tübingen, Germany.

https://se.informatik.uni-tuebingen.de/publications/brachthaeuser20effekt
https://doi.org/10.1145/3428194

2 Effekt: Lightweight Effect Polymorphism for Handlers

besides computing the resulting value. Instead, we take on a different interpretation where
effect types express which capabilities a computation requires from its context. This different
perspective opens up a novel design space, offering different trade-offs, which this paper
starts to explore. We present the design of Effekt, a new language with support for effects
and handlers. While Effekt has the established dynamic semantics of lexically scoped effects
[9], it is equipped with an effect system, which we claim is significantly more lightweight than
those of existing languages with effect handlers. Effekt avoids the complexity that comes
with parametric effect polymorphism simply by omitting the feature from the language.

1.1 Effects as Requirements: The Contextual Reading
In languages with effect systems, effectful functions generally have a type like α→ β/ ε,
where α and β are meta variables representing value types, and ε is a meta variable that
represents a collection of effects. We identify two possible readings of such a type signature.

The Traditional Reading Traditionally, the signature would be read as follows:

"Given a value of type α, the function produces a value of type β and has effects ε".

Effects are often seen as a side effect or additional “output” of a function: effectful expressions
modify the evaluation context. In particular, an empty ε implies that the function cannot
have effects – it is pure. In contrast, a non-empty ε suggests that a function is effectful.

The Contextual Reading In this paper, we propose a novel reading of the types of effectful
functions given above, inspired by Osvald et al. [41].

"Given a value of type α, the function produces a value of type β and requires the
calling context to handle effects ε".

We interpret effects as a requirement to the caller or additional “input” to a function: effectful
expressions depend on the evaluation context. In particular, an empty ε implies that the
function does not impose any requirements on its caller – it is contextually pure. Contextual
purity does not imply purity; a contextually pure function may be side-effecting, but those
effects are handled elsewhere. In contrast, a non-empty ε suggests that the function is
contextually effectful, meaning that the context is responsible for handling the effects.

1.2 An example
The following example program in Effekt uses a higher-order function eachLine, which takes
two arguments: a file someFile and a block (in braces) and calls the block on each line in
the file. In the example, we cannot process empty lines and therefore abort by throwing an
exception.

try {
eachLine(someFile) { (line) ⇒

if (line == "") { do Exception() } else { ... }
}

} with Exception { () ⇒ println("empty line") }

What should the signature of eachLine be and how should that type be interpreted?

Brachthäuser, Schuster, and Ostermann 3

The Traditional Reading In an effect language that uses the traditional reading (we use
Koka [32] here for illustration), a conceivable signature would be this:

eachLine : (file, string → <> ()) → <> ()

The type of the function parameter has an empty effect row <>, which means it cannot have
any effects. Under this type signature our example would not type check, since we pass
an anonymous function (block) that throws exceptions and thus does have an effect. We
could change the signature of eachLine to indicate that the function parameter may throw
exceptions. Since eachLine calls its function parameter, we have to adapt the resulting effect
type as well:

eachLine : (file, string → <exception> ()) → <exception> ()

Specializing signatures of higher-order functions to every use-site is practically not feasible
and so Koka offers support for parametric effect polymorphism.

eachLine : forall<e> (file, string → e ()) → e ()

The Contextual Reading Clearly, demanding the parameter of eachLine to be pure is too
strict, as the example illustrates. Extending the signature for a particular use case is not
a modular solution. Effect polymorphism comes with its own set of problems, which we
discuss in a moment. In any case, the traditional reading does not allow to express that the
parameter of eachLine should be contextually pure, which is expressed as follows in Effekt:

Effects provided by eachLine︷︸︸︷
︸︷︷︸

Effects required by eachLine

def eachLine(file: File) { f: String ⇒ Unit / {} }: Unit / {}

where {} denotes the empty set of effects and types of block parameters (like f) are enclosed
in braces2. Applying the contextual reading, the return type of eachLine communicates
that it does not require any effects. In consequence, we can call eachLine in any context.
More interestingly, the type of the block parameter f also mentions no effects. The function
f is contextually pure: While the caller of f might observe additional effects (for instance
through mutable state), it cannot handle them. Instead, all effects that are used by f have
to be handled at the call-site of eachLine. In our example, the Exception effect used to
signal empty lines is handled at the call site.

1.3 Parametric vs Contextual Effect Polymorphism
Effect polymorphism means that programmers can reuse eachLine with different function
arguments with different effects. In languages like Koka, with support for parametric effect
polymorphism, this amounts to instantiating the effect variable e to the effects of choice (i.e.,
exception in our example). With parametric effect polymorphism, signatures of functions
make it explicit, which effects they do not care about, which might seem counterintuitive.
Parametric effect polymorphism complicates function signatures and care must be taken to
avoid accidental capture [57] and guarantee encapsulation [14]. We agree with Lindley et al.
[36], who state that users should not be confronted with the details of effect polymorphism

2 Enclosing the type of block parameters in braces mimics the syntax at the call site and furthermore
helps to distinguish blocks from traditional first-class functions / lambdas.

TR 2020

4 Effekt: Lightweight Effect Polymorphism for Handlers

In designing Frank we have sought to maintain the benefits of effect polymorphism
whilst avoiding the need to write effect variables in source code.

and with Leijen [32], who states that

In practice though we wish to simplify the types more and leave out “obvious”
polymorphism.

Languages like Koka and Frank, attempt to hide the details of parametric effect polymorphism
behind syntactic sugar. However, once programs get sufficiently complicated, the syntactic
abstraction breaks down and effect polymorphism becomes visible to the user (for instance
in error messages). To the best of our knowledge, all languages with support for effects and
handlers and static effect-typing support this parametric form of effect polymorphism.

Contextual Effect Polymorphism
In contrast, Effekt offers contextual effect polymorphism. Effekt does not have language
constructs for type-level effect variables or quantification over effects. Still, it supports effect
polymorphic reuse of functions and guarantees effect safety. We say that effect polymorphism
in Effekt is contextual. Users never have to deal with parametric effect polymorphism as the
feature simply does not exist: polymorphism implicitly arises from the calling context, as
we are going to elaborate in the formal part of the paper. Our running example type- and
effect-checks without modification in Effekt.

1.4 Lexically Scoped Handlers through Explicit Capability Passing
To establish a dynamic semantics consistent with contextual effect polymorphism, Effekt
programs are translated to a calculus System Ξ (Section 4) in explicit capability-passing
style [9, 11], implementing lexically scoped handlers [7, 57]. Translating our running example
to System Ξ shows that handler implementations are represented as blocks and passed to the
call-site of the effect operation:

handle { Exception ⇒
eachLine(someFile, { line ⇒ if (line ≡ ””) Exception () else ... })
} with { (resume) ⇒

println(”empty line”)
}

Here, we assume the above signature of eachLine: the Exception effect is not handled by the
call to eachLine. Instead, the handler for Exception creates a capability and binds it to the
equally named term variable, highlighted in gray. Explicit capability passing is essential
to establish a lexical connection between an effect handler and the operations it handles.
The block passed to eachLine simply closes over the capabilities that are in scope at its
definition site. Closing over capabilities avoids accidental handling, a problem that arises
when handlers are allocated on the stack and dynamically searched at runtime. Capability
passing also enables effect parametric reasoning: from inspecting the type of eachLine, we
know that there is no way it can modify the semantics of the Exception effect [57, 7, 11].

The semantics of Effekt is designed to be consistent with the expectations implied by
contextual reading of effect annotations. In particular, changing the signature of eachLine to

def eachLine(file: File) { f: String ⇒ Unit / { Exception } }: Unit / {}

signals that eachLine now can handle Exception effects. This is also reflected in the translation:

Brachthäuser, Schuster, and Ostermann 5

handle { Exception ⇒
eachLine(someFile, { (line, Exception) ⇒ if (line ≡ ””) Exception() else ... })
} with { (resume) ⇒

println(”empty line”)
}

The block now binds an Exception capability, shadowing the one of the surrounding handler.

1.5 Purity: Traditional vs. Contextual Reading
While a function with an empty set of effects is pure in the traditional reading, the same
is not true for the contextual reading. A contextually pure function can still have effects,
it merely places no requirements on its caller. Purity only holds relative to the function’s
definition site. Consider the following two functions:

def hof1 { f: () ⇒ Unit } = { f(); 2 }
def hof2 { f: () ⇒ Unit } = { 2 }

In the traditional reading, hof1 and hof2 would be equivalent since f must be pure. However,
in our language, the following code demonstrates that they are not equivalent in the contextual
reading.

try { hof1 { do Exception() } } with Exception { () ⇒ 1 }

This code will yield 1 but if we replace the invocation of hof1 by hof2 it will yield 2.

1.6 Contextual Reading and Second-Class Functions
To support contextual effect polymorphism and at the same time guarantee effect safety,
the type- and effect system of Effekt strictly separates values from blocks (Section 3.2).
Furthermore, blocks are considered second-class [41] and can neither be returned nor stored
in data structures. The following example illustrates, why first-class blocks would be
problematic:

try { def leak(): Unit / {} = { do Exception() }; leak } with Exception { ... };

Here, we define the block leak, which lists no effects since they are handled in its definition
context. However, using the leaked block outside of the corresponding delimiter try { ... }
is not safe and leads to a runtime error. To prevent this, while Effekt supports higher-order
functions (like eachLine), it does not support first-class functions. The loss of expressivity is
the price for an effect system, which we argue is significantly more lightweight, while offering
full safety guarantees and reasoning with effect parametricity. While we can imagine to
recover the lost expressivity and separately add first-class functions [41] or infer whether
functions are first- or second-class [58], in this paper we explicitly refrain from doing so,
laying ground for future explorations.

1.7 Overview and Contributions
The remainder of this paper is structured as follows. Section 2 offers an example-driven
introduction to programming with effect handlers in the Effekt language. It illustrates how our
reading of effects goes hand-in-hand with our translation to explicit capability-passing style.
We then formally define Effekt (Section 3) and provide the operational semantics of Effekt by
translating programs to System Ξ (Section 4) – a calculus in explicit capability-passing style.

TR 2020

6 Effekt: Lightweight Effect Polymorphism for Handlers

We prove soundness of System Ξ and of our translation from Effekt to System Ξ (Section 5).
We practically evaluate Effekt by presenting a practical implementation3 scaling Effekt to
a fully fledged language (Section 6). Finally, in Section 7 we discuss implications of the
contextual reading and compare Effekt to related work on effect handlers. This paper makes
the following contributions:

A formal presentation of the language Effekt with effect handlers and effect safety, but
without parametric effect polymorphism (Section 3).
An algorithmic effect system, which is rooted in a different understanding of effects,
reading effects as requirements that need to be fulfilled by the context. Effect types
in Effekt are sets not rows or lists, which we argue makes them easier to understand
(Section 3.2).
A calculus System Ξ in explicit capability-passing style, supplying handler implementations
as additional arguments to effectful functions (Section 4). The type system of System Ξ
does not include effects or effect types. Instead, handler implementations are represented
as blocks and effect safety is established by treating blocks as second class (Section 4.2).
A definition of the semantics of Effekt by translation into System Ξ (Section 5), which is
the first formalization of a translation from a language with effect handlers to explicit
capability-passing style (Section 5).
A mechanized proof of soundness of System Ξ, a proof of well-typedness preservation of
the translation, and a proof of effect safety of Effekt (Sections 4 and 5).
An implementation of Effekt, compiling programs to JavaScript and using a library
implementation of multi-prompt delimited control (Section 6).
A practical evaluation by extending the calculus to a fully fledged language and imple-
menting several medium-sized case studies (Section 6.3).

2 Programming with Effects and Handlers in Effekt

In Section 1, we have seen how exceptions are raised and handled in Effekt. However,
exceptions are just an instance of the more powerful concept of effects and handlers [44].
In general, with effect handlers programs are structured into three components: Effect
signatures that define available effect operations, effectful programs that use effect operations,
and effect handlers that give meaning to the effect operations. In this section, we introduce
programming with effect handlers in Effekt and illustrate the contextual reading of effects in
several examples. The examples illustrate that, despite the contextual reading, programming
with effects and handlers in Effekt is not much different from existing languages. Differences
only become visible in examples that require effect polymorphism, like higher-order functions.
As a running example, we adopt the approach by Leijen [29] and implement a parser
combinator library using effect handlers. Our goal is to parse a list of numbers, while
assembling the parser from individual reusable components.

2.1 The Fail Effect
Effect signatures provide the interface of effect operations, but not their implementation. In
Effekt, effect signatures are declared as follows:

effect Fail[A](msg: String): A

3 https://effekt-lang.org

https://effekt-lang.org

Brachthäuser, Schuster, and Ostermann 7

The effect operation Fail aborts the current computation with a given message. It is
polymorphic in its return type A so we can use it in any expression position. The following
effectful function converts a string to an integer. It uses the Fail effect to signal that the
conversion failed.

def stringToInt(str: String): Int / { Fail } = toInt(str) match {
case Some(n) ⇒ n
case None() ⇒ do Fail("cannot convert input to integer")

}

In case the optional value returned by the builtin function toInt is None(), we use the effect
operation Fail to signal an error. We can freely compose programs that use effects. For
instance, we can use the function stringToInt to convert and then add two numbers:

def perhapsAdd(): Int / { Fail } = stringToInt("1") + stringToInt("2")

The type of function perhapsAdd communicates that it requires the calling context to handle
the Fail effect, although perhapsAdd does not use the Fail effect itself. This requirement
arises from the uses of stringToInt. Handling effects is similar to handling exceptions:

try { perhapsAdd() } with Fail { (msg) ⇒ 0 }

In case any conversion fails, the effect handler for the Fail effect returns 0 as a default value.
The type of the program is Int / {}, it has no unhandled effects, and we can run it to get
the result 3.

Capability Passing Programs in Effekt are translated into a core calculus (System Ξ, Sec-
tion 4) that explicitly passes handler implementations to their use site. We refer to these
explicitly passed handler implementations as capabilities. Handlers, like the one for Fail,
introduce capabilities, which are then passed as additional arguments to effectful functions.
This can be seen in the translation of the above example:

handle { Fail ⇒ perhapsAdd(Fail) } with { (msg, resume) ⇒ 0 }

Handling Fail introduces an equally named capability, which is passed to perhapsAdd.
Section 4.3 will go into more detail, for now it suffices to understand that the Fail capability
contains the handler implementation.

2.2 The Next Effect

Effect handlers generalize exceptions and can express many more effects. Another example is
the Next effect that we will use to work with a pull-based stream of string values:

effect Next(): String

Using Next and Fail, we can express a parser that recognizes a number in the input stream:

def number() : Int / { Next, Fail } = stringToInt(do Next())

The return type of number signals that we can only call it in a context that provides
implementations for both Next and for Fail. We can handle the Next effect by always
returning "42", modeling an infinite stream of strings:

def always42[R] { prog: () ⇒ R / { Next } }: R / {} =
try { prog() } with Next { () ⇒ resume("42") }

TR 2020

8 Effekt: Lightweight Effect Polymorphism for Handlers

This handler implementation illustrates the additional power of effect handlers over exception
handlers: in an effect handler we can call resume to transfer control back to the call-site of the
effect operation. While the handler for Fail did not use resume, in this example we resume
the computation with "42". Since Next returns a string, resume has type String ⇒ R / {}.
The type signature of always42 communicates that it will handle the Next effect on prog.
The empty effect set in the return type signals that always42 itself does not require any
effects. Since it is polymorphic in the result type R, we know that it will call prog and
handle the Next effect. Under our contextual reading, the block passed to always42 can
have additional effects that need to be handled at the call-site of always42. However, the
implementation of always42 cannot interfere with these additional effects.

try { always42 { number() } } with Fail { (msg) ⇒ 0 }

In this example, we handle the two effects Next and Fail that number requires with different
handlers. Running it results in the integer 42. Again, inspecting the translated program
makes clear how effect types correspond to requirements on the caller:

handle { Fail ⇒ always42({ Next ⇒ number(Next , Fail) }) } with { (msg, resume) ⇒ 0 }

Now, two separate capabilities for Next and Fail are passed to the effectful function number.
Note how the Next capability is introduced by handler always42.

Effect handlers grant flexibility in the interpretation of effect operations. We can define
another handler for the Next effect that reads from a given list.

def feed[R](input: List[String]) { prog: () ⇒ R / { Next } } : R / { Fail } = {
var remaining = input;
try { prog() } with Next { () ⇒

remaining match {
case Nil() ⇒ do Fail("End of input")
case Cons(element, rest) ⇒ remaining = rest; resume(element)

}
}

}

This alternative handler shows two interesting things: Firstly, it itself uses the Fail effect to
signal an unexpected end of the input stream. Secondly, it uses a mutable variable remaining
to keep track of the position in the input stream. Mutable variables in Effekt are conceptually
stack allocated, which guarantees a well-defined interaction with control effects (Section 6).

2.3 The Choice Effect
The handler for Fail discarded the resumption, the handler for Next called it exactly once.
The third and final example effect illustrates that it can be useful to call the resumption
more than once. For this, we define the effect Choice, which returns a boolean to model the
outcome of a (potentially) non-deterministic choice:

effect Choice(): Boolean
In the Effekt language, we can mix effect operations with other imperative language constructs
like loops and references. For example, we can define a higher-order function many that calls
a given program an unknown number of times, controlled by the Choice effect:

def many { prog: () ⇒ Unit / {} }: Unit / { Choice } = while (do Choice()) { prog() }

We use many to define a parser that reads arbitrarily many numbers and adds them. Note
how using many feels as natural as using the built-in control operator while:

Brachthäuser, Schuster, and Ostermann 9

def numbers() = { var res = 0; many { res = res + number() }; res }

The inferred return type of numbers is Int / { Choice, Fail, Next }. Different handlers
for Choice correspond to different search strategies. One possible example handler performs
a backtracking search to find the first success:

def backtrack[R] { prog: () ⇒ R / { Fail, Choice } }: Result[R] / {} =
try { Success(prog()) }
with Fail { (msg) ⇒ Failure(msg) }
with Choice { () ⇒

resume(true) match {
case Failure(msg) ⇒ resume(false)
case Success(res) ⇒ Success(res)

}
}

The handler uses a data type that represents the potentially negative outcome of the search:

type Result[R] { Success(res: R); Failure(msg: String) }

Handler backtrack handles two effects: Fail and Choice. At each choice, it first resumes
with true and in case of failure resumes a second time with false. Any use of the Fail
effect aborts the current search path with Failure.

2.4 Parsing

Parsers like numbers use the effects Fail, Next, and Choice that we group under an effect
alias:

effect Parser = { Fail, Next, Choice }

To handle the Parser effect, we simply reuse the handler implementations from this section:

def parse[R](input: List[String]) { prog: () ⇒ R / Parser }: Result[R] / {} =
backtrack { feed(input) { prog() } }

A parser handles Next by reading from the given list of strings. It handles all failures
in prog and in feed using the implementation of backtracking search. By nesting feed
inside of backtrack, the position in the input stream is automatically correctly back-
tracked when a choice is resumed a second time (Section 6). Running the program
parse(["1", "2"]) { numbers() } outputs the number 3.

Section conclusion Effect handlers generalize exception handlers and offer additional
expressivity. This way, the advanced control flow of programs like numbers can be modularly
described in user defined combinators. Our backtracking implementation corresponds roughly
to a hand-written recursive descent parser with the advantage that the decision for a parsing
algorithm is not hard coded into parsers like numbers. The imperative parser combinators can
easily be combined with other effects like mutable state, exceptions, or even let-insertion [56].
Abstractions like the many combinator can be shared in a library and reused across different
domains.

TR 2020

10 Effekt: Lightweight Effect Polymorphism for Handlers

3 The Language Effekt

In this section, we formally present the syntax and type system of the Effekt language.
Section 4 then introduces the core calculus System Ξ, and Section 5 defines the semantics of
Effekt by translation into System Ξ.

3.1 Syntax

Figure 1 defines the syntax of Effekt. Like other languages with effect handlers [24] it is
presented in fine-grain call-by-value [35]. That is, we syntactically distinguish expressions,
which cannot have control effects from statements that can have control effects.

Expressions Effect safety of Effekt rests on the property that all functions (blocks) are
second class. Consequently, blocks are syntactically neither values nor expressions. Only
primitive constants are values. Similarly, we distinguish syntactically between variables that
stand for values (x, y, . . .) and variables that stand for blocks (f, g, . . .). As usual, we follow
Barendregt [1] and require that all expression variables, block variables, and operation names
are globally unique.

Statements We sequence two statements with val x = s0; s1, where the result of s0 will
be bound to the variable x in s1. The syntactic form def f (x : τ , g : σ) : τ / ε = s0; s
defines a block f , binding a fixed, but arbitrary number of value variables x as well as block
variables g. As seen in Section 1, effect types can influence the operational semantics and we
thus require the types of arguments and the return type (e.g., τ / ε) to be annotated. Calling
blocks is denoted f (e, g), providing potentially multiple value arguments as expressions
e and block arguments as block variables g. Without loss of generality, we do not allow
passing anonymous blocks and require that all blocks are named, before passing them to
a call. This convention significantly simplifies the presentation of the typing rules and the
translation. Effect declarations are statements of the form effect F(x : τ) : τ ; s, which
means that effects can be declared locally. Effect calls (i.e., do F(e)) only take a single
expression argument. While the restriction to one argument is insignificant, it is important
that effect operations only take expressions as arguments and never blocks. Otherwise blocks
could escape their scope through the effect operation [11], violating effect safety. Finally, the
statement try { s } with F { (x : τ) ⇒ s′ } expresses that effect calls to F in the handled
statement s will be handled by the handler F { (x : τ) ⇒ s′ }. The special block variable
resume is available in the handler implementation s′.

Types The meta variable τ describes value types, which we use to type expressions. The
meta variable σ describes block types, which we use to type blocks. Expressions are first-class,
while blocks are second-class [41]. A block type (i.e., (τ , σ) → τ / ε) takes expressions of
types τ and blocks of types σ as parameters. The return type τ of a block indicates that
only values (and not blocks) can be returned. The block type also mentions the effects ε that
need to be handled by the caller. Effects ε = { F1, ..., Fn } are (closed) sets of operation
names Fi . This is different from languages that base their effect systems on row polymorphic
records where effect operations can occur multiple times [32] or effects are annotated with
presence/absence information [23]. Modeling effects as sets greatly simplifies typing as no
special unification rules are needed [27].

Brachthäuser, Schuster, and Ostermann 11

Syntax:

Statements s ::= val x = s; s sequencing
| e expressions
| def f (x : τ , g : σ) : τ / ε = s; s block definition
| f (e, g) block call
| effect F(x : τ) : τ ; s effect declaration
| do F(e) effect call
| try { s } with F { (x : τ) ⇒ s } effect handling

Expressions e ::= x | v

Expression Values v ::= () | 0 | 1 | ... | true | false | ... primitives

Syntax of Types:

Value Types τ ::= Int | Bool | ...

Block Types σ ::= (τ , σ) → τ / ε

Effect Sets ε ::= { F1, ..., Fn }

Value Environment Γ ::= ∅ | Γ, x : τ

Block Environment ∆::= ∅ | ∆, f : σ

Effect Environment Σ::= ∅ | Σ, F : τ → τ

Names:

Expression Variables x, y ∈ x, y Block Variables f , g ∈ f, g Operations F ∈ Fail, Choice, ...

Figure 1 Syntax of the source language Effekt.

3.2 Typing
Figure 2 defines the typing rules of Effekt. To understand the type system, it is important to
recall the interpretation of effect types in Effekt:

Effect types express which capabilities a computation requires from its context.

This intuition will be useful when we discuss the details of the typing rules. There are two
judgments, one for expressions and one for statements.

3.2.1 Expression Typing
The judgment for expressions Γ ` e : τ assigns an value type τ to an expression e in value
environment Γ. Typing of expressions only requires a value environment, since expressions
cannot mention any blocks or effects. Furthermore, since expressions do not have control
effects, expression typing computes a value type τ without any effects. The typing rules for
expressions are completely standard.

3.2.2 Statement Typing
The judgment for statements Γ ∆ Σ ` s : τ ε computes a value type τ and a set of
required capabilities ε for the statement s. It uses three environments, a value environment
Γ, a block environment ∆, and an effect environment Σ. Rule Val types sequencing of
statements. It accumulates all required capabilities of the binding s0 and the body s1 by
taking the union of the corresponding effect sets ε0 and ε1. Rule Expr types an expression
statement by assigning the empty set of effects. Rule Def types block definitions. It is a

TR 2020

12 Effekt: Lightweight Effect Polymorphism for Handlers

Statement Typing
Γ
↑

∆
↑

Σ
↑

` s
↑

: τ
↓

ε
↓

Γ ∆ Σ ` s0 : τ0 ε0 Γ, x : τ0 ∆ Σ ` s1 : τ1 ε1

Γ ∆ Σ ` val x = s0; s1 : τ1 ε0 ∪ ε1
[Val]

Γ ` e : τ

Γ ∆ Σ ` e : τ ∅
[Expr]

Γ, x : τ ∆, g : σ Σ ` s0 : τ0 ε′
0 Γ ∆, f : (τ , σ) → τ0 / ε0 Σ ` s : τ ε

Γ ∆ Σ ` def f (x : τ , g : σ) : τ0 / ε0 = s0; s : τ (ε′
0 \ ε0) ∪ ε

[Def]

Γ ` e : τ ∆(g) = σ ∆(f) = (τ , σ) → τ / ε

Γ ∆ Σ ` f (e, g) : τ ε
[BlockCall]

Γ ∆ Σ, F : τ1 → τ0 ` s2 : τ2 ε2 F 6∈ ftv(ε2)
Γ ∆ Σ ` effect F(x1 : τ1) : τ0; s2 : τ2 ε2

[Effect]

Σ(F) = τ1 → τ0 Γ ` e1 : τ1

Γ ∆ Σ ` do F(e1) : τ0 { F }
[EffectCall]

Σ(F) = τ1 → τ0 Γ ∆ Σ ` s : τ ε

Γ, x1 : τ1 ∆, resume : (τ0) → τ / ∅ Σ ` s′ : τ ε0

Γ ∆ Σ ` try { s } with F { (x1 : τ1) ⇒ s′ } : τ (ε \ { F }) ∪ ε0
[Try]

Expression Typing
Γ
↑

` e
↑

: τ
↓ Γ ` n : Int

[Lit] Γ(x) = A
Γ ` x : A

[Var]

Figure 2 Typing rules of the source language Effekt.

bit more involved and requires some explanation. The capabilities a block requires can be
provided in two different ways. Firstly, the block can mention a required effect in its type,
which means that the effect is handled dynamically and the capability needs to be provided
by the caller. Secondly, all capabilities that are not part of the annotated type need to be
provided by the context at the definition site of the block. This can be seen in analogy to
term-level variables: free variables in a function body can either be bound as parameters of
the function, or they are bound in the context of the definition site. Hence, we call this form of
handling lexical handling. Rule Def embodies the essence of contextual effect polymorphism:
using type annotations, programmers can control which effects are handled at the call-site
(i.e., ε0), and which effects are free (i.e., ε′0 \ ε0) and need to be handled at the definition
site of a block. Operationally, as we will see in Section 5, the block will close over the free
effects. Since all complications are part of rule Def, typing block calls (rule BlockCall)
takes a familiar form, simply checking whether the argument types conform to the annotated
parameter types. The decision whether effects of (anonymous) block arguments are handled
dynamically or lexically is clear from the types at their definitions.

Brachthäuser, Schuster, and Ostermann 13

I Example 1. The following example illustrates how the Def rule enables contextual effect
polymorphism:

def optionally { prog: () → Int / { Fail } }: Option[Int] / {} = ...;
optionally { () ⇒ if (do Choice()) do Fail("failed") else 42 }

We desugar this example to bind the block to a fresh name anon with exactly the type of
the block parameter of optionally.

def optionally { prog: () → Int / { Fail } }: Option[Int] / {} = ...;
def anon(): Int / { Fail } = if (do Choice()) do Fail("failed") else 42;
optionally(anon)

The example program has the overall type Option[Int] / { Choice }. The required
capability Fail is provided by function optionally, while Choice is free and has to be provided
by the context of the definition of anon.

The last three rules are concerned with effect declaration, use, and handling. Rule Effect
extends the effect environment Σ, bringing the effect operation F into scope. The side-
condition F 6∈ ftv(ε2) corresponds to the standard check that type variables should not
leave the scope in which they are defined [20]. Symmetrically, rule EffectCall requires
the effect to be lexically in scope when an effect operation is used. Interestingly, in our
capability-oriented formalization, this simple check suffices to express locally defined effects,
where other languages require sophisticated use of existential quantification [6]. Lastly,
rule Try types handling of effects. The handled statement s is assigned return type τ and
effects ε. In Effekt, after typing s, the handled effect is subtracted from the resulting set
of effects ε. This, again, is an important difference compared to languages based on row
polymorphism [32] where, by unification, the effect type of s would necessarily include F .
The body of the handler s′ can assume that the variable x1 has type τ1 and that the block
variable resume has type (τ0) → τ / ∅. The latter might come with surprise: one might
expect that the continuation still has effects. However, recalling our contextual reading of
effects, we can see that resume is merely contextually pure. All effects in resume are handled
outside the corresponding try statement. In particular, the body of the operation clause does
not have to (and even cannot) handle any effects in resume. Typing the continuation with
the empty set of effects is safe since it is a block and cannot leave the scope of its definition.
Finally, the resulting set of effects is the set of effects ε of the handled statement, without F ,
but including all effects used by the effect operation ε0.

4 The Core Language System Ξ

To specify the semantics of Effekt, we translate it to a core language: System Ξ. This section
presents its syntax and type system, sketches its operational semantics, and states semantic
soundness. Section 5 then defines the translation from Effekt to System Ξ and shows it
preserves well-typedness. Effect safety of Effekt follows as a corollary. The full operational
semantics, as well as detailed proofs can be found in Appendices A.1 to A.4. We have
mechanized the type system and operational semantics of System Ξ in the dependently typed
programming language Idris [13]. Our implementation of Effekt closely follows the translation
presented in Section 5.

TR 2020

14 Effekt: Lightweight Effect Polymorphism for Handlers

Syntax of Terms:

Statements s ::= val x = s; s sequencing
| e expressions
| def f = b; s block definition
| b(e, b) block call
| handle { F ⇒ s } with { (x, k) ⇒ s } handler

Expressions e ::= x | v

Expression Values v ::= () | 0 | 1 | ... | true | false | ... constants

Blocks b ::= f | w

Block Values w ::= { (x : τ , f : σ) ⇒ s }

Syntax of Types:

Value Types τ ::= Int | Bool | ...

Block Types σ ::= (τ , σ) → τ

Value Environment Γ ::= ∅ | Γ, x : τ

Block Environment ∆ ::= ∅ | ∆, f : σ

Names:

Expression Variables x, y ∈ x, y Block Variables f , g, k, F ∈ f, g, k, Fail, Choice, ...

Figure 3 Syntax of System Ξ.

4.1 Syntax

Figure 3 defines the syntax of System Ξ. Like Effekt, the core language is in fine-grain
call-by-value. Also like Effekt, it distinguishes expressions e and blocks b. Unlike Effekt,
however, the core language supports effect handlers in explicit capability-passing style. That
is, effect operations are represented by blocks, which are introduced by the corresponding
handler and passed as additional arguments. As a consequence, System Ξ does not distinguish
between named blocks (that is, function definitions), anonymous blocks, and effect operations
– all three are represented by the syntactic category of blocks b. Blocks b can either be block
variables f or block values w of the form { (x : τ , f : σ) ⇒ s }. Note how block variables
(e.g., Choice or Fail) in System Ξ may have the names of effect operations in Effekt. Local
blocks are defined with def f = b; s, binding block b to the name f in scope of the statement
s. Block calls in System Ξ, of the form b(e, b), subsume block and effect calls of Effekt.
Arguments can be an arbitrary number of value arguments and block arguments. Finally,
the handle statement handle { F ⇒ s } with { (x, k) ⇒ s′ } binds the block variable F in
the handled statement s. The value parameter x and the continuation block k are bound in
the handler implementation s′.

4.2 Typing

The typing rules of System Ξ are defined in Figure 4. Like the source language, System Ξ
distinguishes between two kinds of types: value types τ and block types σ. Importantly,
block types now do not mention any effects, but only map value- and block parameter types
to a resulting value type τ . Furthermore, inspecting the type system of System Ξ, we can
see that it does not include an effect system. Effect safety is simply established by treating

Brachthäuser, Schuster, and Ostermann 15

Type Rules:

Statement Typing
Γ ∆ ` s : τ Γ ∆ ` s0 : τ0 Γ, x : τ0 ∆ ` s1 : τ1

Γ ∆ ` val x = s0; s1 : τ1
[Val]

Γ ` e : τ

Γ ∆ ` e : τ
[Expr]

Γ ∆ ` b : σ Γ ∆, f : σ ` s : τ

Γ ∆ ` def f = b; s : τ
[Def]

Γ ∆ ` b : (τ , σ) → τ0 Γ ` e : τ Γ ∆ ` b : σ

Γ ∆ ` b(e, b) : τ0
[Call]

Γ ∆, F : τ1 → τ0 ` s : τ Γ, x : τ1 ∆, k : τ0 → τ ` s′ : τ

Γ ∆ ` handle { F ⇒ s } with { (x, k) ⇒ s′ } : τ
[Handle]

Block Typing
Γ ∆ ` b : σ

∆(f) = σ

Γ ∆ ` f : σ
[BlockVar]

Γ, x : τ ∆, f : σ ` s0 : τ0

Γ ∆ ` { (x : τ , f : σ) ⇒ s0 } : (τ , σ) → τ0
[Block]

Expression Typing
Γ ` e : τ

Γ(x) = τ

Γ ` x : τ
[Var] Γ ` n : Int

[Lit]

Figure 4 Type system of System Ξ – typing rules for runtime extensions can be found in
Appendix A.2.

blocks as second class. The type system of System Ξ has three judgments, one for each
syntactic category. Statements and blocks are typed against two environments: environment
Γ for value variables and environment ∆ for block variables. Since effects are translated
to blocks, the signature environment Σ is not required anymore. Besides distinguishing
between values and blocks and using separate environments, the typing rules for sequencing
(Val), expressions in statement position (Expr), block definitions (Def), and block calls
(Call) are completely standard. They correspond to the rules of Effekt but without any
tracking of effects. Rule Handle is central to the calculus. We handle statement s with the
handler implementation s′. The handler introduces a capability and binds it to the operation
name F , which is brought into scope as a block variable in the handled statement s. In
the handler implementation s′, the parameter of the effect operation x has type τ1 and the
continuation k is an ordinary block variable of type τ0 → τ . The (answer) type τ appears
four times in this rule: As the return type of the overall statement, the return type of the
handled statement, the result type of the continuation, and the return type of the handler
implementation – all have to agree.

TR 2020

16 Effekt: Lightweight Effect Polymorphism for Handlers

4.3 Operational Semantics
We give the semantics of System Ξ as a small-step operational semantics using evaluation
contexts [53]. To allow capturing and resuming continuations, the semantics of System Ξ
follows the generative semantics presented by Biernacki et al. [7], who in turn present a variant
of multi-prompt delimited control [22]. Like previous presentations of effect handlers [25],
capturing a continuation removes the corresponding delimiter and resuming reinstalls the
delimiter. This corresponds to a multi-prompt variant of the control operator shift0 [15]. Our
presentation requires two additional runtime constructs that only appear during evaluation:
delimiters and capabilities.

Labels Both runtime constructs refer to unique runtime labels l, generated during reduction.
We only require that labels can be compared for equality and that we are able to generate
fresh labels at runtime. In this paper, we represent concrete labels as hexadecimal hashes
(e.g., @a5f) to highlight that they are created at runtime.

Delimiters The additional statement #l { s } represents a delimiter that delimits a state-
ment s at a given label l (or prompt in the terminology of Felleisen [21], Sitaram [49],
and Gunter et al. [22]).

Capabilities The additional block value capl { (x, k) ⇒ s } represents a capability, which
is a pair of a label l and a handler implementation s [9]. Calling a capability captures the
stack segment up to the next dynamically enclosing delimiter for the label l, reifies it as a
continuation, and binds it to k.

4.3.1 Reduction Rules
The presentation of the operational semantics follows Gunter et al. [22] and is based on
delimited evaluation contexts Hl (definition is given in the Appendix A.1) where the label l
does not appear in any delimiters in Hl . It is used to guarantee that captured continuations
are always delimited by the dynamically closest delimiter for a label. Here we only give the
most important reduction rules – the full description of the operational semantics, as well as
the extension of the type system to account for the additional runtime constructs can be
found in Appendix A.2.

Handling introduces delimiters Rule (handle) creates a fresh runtime label l, delimits the
handled statement s with this label, and substitutes a capability that refers to l for the block
variable F .

(handle) handle { F ⇒ s } with { (x, k) ⇒ s′ } −→ #l { s[F 7→ capl { (x, k) ⇒ s′ }] }
where l fresh

Since the label is fresh, the capability is only valid in the dynamic region delimited by #l .
Calling the capability outside of the region will lead to a stuck term. Our semantics is
generative: reducing the same handle statement twice will introduce two distinct runtime
labels [7].

Capabilities capture the continuation The most interesting rule (cap) captures part of the
context:

Brachthäuser, Schuster, and Ostermann 17

(cap) #l { Hl [(capl { (x, k) ⇒ s })(v)] } −→ s[x 7→ v, k 7→ { y ⇒ #l { Hl [y] } }]

The application of a capability to a value (e.g., (capl { (x, k) ⇒ s })(v)) itself is not a redex.
This highlights the essence of control effects: they depend on (and modify) the context they
are evaluated in. The application of a capability with label l is only meaningful in a context,
which is delimited at label l. This becomes visible in rule (cap), where the delimiter #l , the
delimited context Hl , and the capability application together form a redex. We reify this
context as a continuation and substitute it (as well as the argument v) in the body of the
handler implementation. Effect safety means that applications of a capability with label l
only occur in a context with a delimiter at l (Theorem 4.3).

Only values can leave delimiters Once a statement is reduced to a value, delimiters are
discarded:

(ret) #l { v } −→ v

Since blocks (and capabilities) are no expression values, they cannot be returned.

I Example 2. The following example illustrates the operational semantics of capturing
continuations. We assume an effect operation ∆(Yield) = Int → Int.

handle { Yield ⇒ val x = Yield(20); x ∗ 2 } with { (x, k) ⇒ k(x + 1) }

Reducing handle introduces a fresh label (e.g., @a1) and uses it to delimit the handled
program. It also introduces a capability and substitutes it for Yield:

#@a1 { val x = (cap@a1 { (x, k) ⇒ k(x + 1) })(20); x ∗ 2 }

Applying rule (cap), we obtain (captured stack segment highlighted in gray):

k(20 + 1) where k = { y ⇒ #@a1 { val x = y; x ∗ 2 } }

Further reducing the application results in

#@a1 { val x = 21; x ∗ 2 }

where we proceed to reduce under the delimiter to obtain #@a1 { 42 }, and finally remove the
delimiter to get the result 42. As can be seen from the example, capturing the continuation
removes the corresponding delimiter #@a1 and calling the continuation reinstalls it. This
treatment of delimiters together with capability passing models deep handlers [25].

4.4 Soundness
In our mechanized formalization, we represent System Ξ terms by their typing derivations [4]
and show progress constructively by implementing the semantics as a total step function. One
important class of stuck terms are capability applications without a corresponding delimiter.

I Definition 3 (Undelimited Label). A statement s contains an undelimited label l, if it has
the form Hl [(capl { (x, k) ⇒ s′ })(v)].

In our operational semantics, reducing a redex never produces a newly undelimited la-
bel. In the type system for System Ξ extended with runtime constructs (Appendix A.2),
we add an additional label context Ξ to the typing judgement, which now has the form
Γ ∆ Ξ ` s : τ . All typing rules in Figure 4 ignore Ξ and simply pass it to the premises.
We use this label context in our proof to formally capture this invariant.

TR 2020

18 Effekt: Lightweight Effect Polymorphism for Handlers

Translation of Block Types and Effect Types:

T J (τ , σ) → τ0 / { F1, Fn } K = (τ , T JσK, T JF1K, ..., T JFnK) → τ0

T J F K = (τ1) → τ0

where Σ(F) = τ1 → τ0

T J {F1, ..., Fn} K = F1 : T JF1K, ..., Fn : T JFnK

Translation of Statements:

SJ val x = s0; s1 K = val x = SJ s0 K; SJ s1 K

SJ e K = e
SJ def f (x, g) : τ0 / ε0 = s0; s K = def f = { (x, g, F1, ..., Fn) ⇒ SJ s0 K }; SJ s K

where ε0 = { F1, Fn }

SJ f (e, g) K = f (e, g, F1, ... Fn)
where f : (τ , σ) → τ0 / { F1, ... Fn }

SJ effect F(x1 : τ1) : τ0; s K = SJ s K
SJ do F(e1) K = F(e1)
SJ try { s } with { F(x) ⇒ s′ } K = handle { F ⇒ SJ s K } with { (x, resume) ⇒ SJ s′ K}

Figure 5 Translation of Effekt to System Ξ – we assume a canonical ordering of effects in ε.

Starting from an empty label context, closed and well-typed System Ξ programs either are
values or we can take a step. Here the relation 7−→ describes congruence, that is, reduction
under a context.

I Theorem 4 (Progress of System Ξ). If ∅ ∅ ∅` s : τ , then s is a value v or s 7−→ s′.

Our mechanized formalization establishes preservation by indexing System Ξ programs with
their type. Performing a reduction step on a statement preserves its type:

I Theorem 5 (Preservation of System Ξ). If ∅ ∅ ∅` s : τ and s 7−→ s′ then ∅ ∅ ∅` s′ : τ .

In particular, reduction also preserves the (empty) label context. That is, from progress and
preservation follows effect safety: programs are never stuck on an undelimited label.

5 Translation of Effekt to System Ξ

Having introduced both Effekt and System Ξ formally, we now show how to make the flow of
capabilities explicit by translating Effekt into System Ξ, i.e. into explicit capability-passing
style. The translation is type directed and operates on typing derivations. Intuitively, where
in Effekt the effect types indicate that a computation requires capabilities to be available in its
context, in System Ξ we explicitly pass such capabilities as additional arguments. Figure 5
defines the translation. The translation is defined on types and on statements. We neither
translate expressions, nor their types, since the language of expressions is the same in Effekt
and System Ξ.

Translation of types We translate blocks that require a set of effects { F1, ..., Fn } to
blocks that receive n additional block arguments – one for each member of the set. The
translation of effect sets to additional arguments can be seen in the translation of block
types, of block definitions, and of block calls. Names of operations in Effekt are now names
of block variables in System Ξ. For the translation, we assume a canonical ordering of effects

Brachthäuser, Schuster, and Ostermann 19

in each ε. In our implementation, it suffices to choose an arbitrary but fixed ordering for
each type signature. The translation of types extends to environments and sets of effects. In
particular, we translate the sets of effects ε of Effekt into block environments ∆ of System Ξ
translating each effect operation to a binding in the block environment. We assume that
names of blocks and names of effect operations are disjoint and no name conflicts arise.

Translation of terms The translation of block definitions uses type information to add
additional capability parameters to the block f . Symmetrically, the translation of application
adds additional arguments. Assuming Σ(Fail) = (String) → Int, the program of Example 3.1
translates to:

def optionally = { (prog : ((String) → Int) → Int) ⇒ ... }
def anon = { (Fail : (String) → Int) ⇒ if (Choice()) then Fail(”failed”) else 42 }
optionally(anon)

Effect calls translate to ordinary block calls, where the name of the called block is the same
as the name of the effect operation (e.g., Choice or Fail). The effect system of Effekt and the
translation guarantee that a block with the name of the effect operation is in scope. Effect
types and their declarations disappear during translation. Translating the try statement of
Effekt into the handle statement of System Ξ makes two things explicit: Firstly, the handle
statement now explicitly binds the capability F as a block in the handled statement s.
Secondly, the continuation resume is bound explicitly as a block variable in the body s′.

5.1 Well-typedness Preservation
The translation from Effekt to System Ξ in explicit capability-passing style preserves well-
typedness:

I Theorem 6 (Translation preserves well-typedness).
If Γ ∆ Σ ` s : τ ε , then Γ T J∆K + T JεK ∅ ` SJsK : τ .

Proof. Straightforward induction over the typing derivations (see Appendix A.4). J

The translated program SJ s K is valid under the empty label context Ξ = ∅, i.e. does not
contain any undelimited labels. This is obvious as the translation (Figure 5) never introduces
any labels, delimiters, or capabilities. Those are only introduced at runtime by reducing
handle statements.

5.2 Semantic Soundness of Effekt
We define the semantics of Effekt as the composition of the translation to System Ξ and the
semantics of System Ξ. This presentation emphasizes our capability-based understanding of
effects by translating them to explicitly passed blocks. Semantic soundness (that is, effect
safety) of Effekt directly follows from preservation of well-typedness (Theorem 5.1) and
soundness of System Ξ. We can identify two potential sources of runtime errors that would
violate effect safety:

Unhandled effects Effects in Effekt might be unhandled, that is there is no enclosing effect
handler that would handle the effect. In our translation, effect operations are translated
to block calls. Unhandled effects thus correspond to unbound block variables. The type-
system of System Ξ and well-typedness preservation guarantees that such programs cannot
be expressed.

TR 2020

20 Effekt: Lightweight Effect Polymorphism for Handlers

const usercode =
handle([{

"op$Exception": resume ⇒ println("empty line")
}])(Exception ⇒

eachLine(someFile, (line) ⇒
(line == "") ? Exception.op$Exception()

: pure(unit)))

(a) JavaScript code generated for the running example
from Section 1.

(b) Warnings facilitate the development of
programs using effects and handlers.

Figure 6 Practical aspects: compilation output and IDE integration.

Escaping capabilities Effects are translated to capabilities and those contain labels. Those
capabilities could (accidentally) leave the scope of the corresponding delimiter, leading to
a runtime error. However, this is ruled out by preservation (Theorem 4.4) of System Ξ.
Furthermore, the translation does not introduce any delimiters or uses runtime labels in any
other way.

6 Practical Evaluation

To evaluate the design of Effekt, we implemented a compiler from Effekt to JavaScript. The
evaluation aims to establish feasibility of a language implementation, practically investigate
expressivity and severity of the restrictions imposed by the language design, explore the
interaction with (seemingly orthogonal) extensions to the language, evaluate the integration
with a target language like JavaScript (via foreign function interfaces), practically evaluate
effect inference in combination with bidirectional typechecking, and finally further explore the
design space and extensions with additional interesting features. Our implementation scales
the presented calculus Effekt to a fully fledged language. Among others, it features algebraic
data types, (nested) pattern matching, value polymorphism, type directed overloading, local
(backtrackable) mutable state, and a foreign function interface to JavaScript. We used the
language implementation to develop multiple, medium sized case studies. In this section,
we describe the language implementation, discuss differences to the formal presentation of
Effekt, and elaborate on our experience in using Effekt to implement the case studies. The
language implementation, an implementation of a Visual Studio Code plugin, as well as the
documented case studies can be found in the repository accompanying this paper4.

6.1 Description of the Implementation

Our implementation of Effekt is based on the translation to System Ξ as presented in this
paper. Additionally, the compiler then translates System Ξ to a subset of JavaScript using a
library implementation of monadic delimited control [19]. The implementation of the Effekt
language spans around 7.000 lines of code, while the monadic JavaScript runtime system
only comprises around 150 lines of code.

4 https://github.com/effekt-lang/effekt

https://github.com/effekt-lang/effekt

Brachthäuser, Schuster, and Ostermann 21

6.1.1 Generated JavaScript Code
To get an impression of the generated JavaScript code, Figure 6a shows the result of
translating the user program of our running example. The JavaScript code is in explicit
capability-passing style. The library function handle takes the handler implementation and
introduces a capability Exception in the body, which is passed as second argument. The
resulting code also shows the use of the library for monadic delimited control [19, 11]. Pure
values without control effects are embedded into the monad by calling pure. Programs
like usercode can be executed with usercode.run(). Since JavaScript is call-by-value, our
library implementation additionally includes a function delay that expects a computation
without control effects, but with potential side effects of the target language. It defers the
side effects until they are forced by corresponding call to run().

6.1.2 IDE Support for Effects and Handlers
For our practical evaluation, we implemented a Visual Studio Code extension. In addition to
the usual features of IDEs (like error reporting or jumping to definitions), two features proved
to be particularly useful to develop effectful programs: Firstly, while inferring return types
(and effects) of functions facilitates refactorings and allows programmers to use additional
effects without having to change the signatures, displaying the inferred effects in the IDE
heavily improves program understanding. Secondly, the contextual effect system of Effekt
makes it very convenient to work with higher-order effect polymorphic functions. Sometimes,
we experienced that the effect system is actually too convenient to use: As illustrated in
Section 1, changing the type signature of a function influences which effects are handled.
These changes might go unnoticed at the call-site and lead to correct, but potentially
unexpected behavior. Programmers might assume one particular handler to handle an
operation, while that handler is shadowed by a syntactically closer one. To address this, we
added warnings as illustrated in Figure 6b that guide the user in writing effectful code.

6.2 Differences to the Calculus
There are some differences between the calculus presented in this paper and its implementation,
mostly additional language features. For example, the implementation adds algebraic data
types and pattern matching. Importantly, constructors can only take value arguments, no
block arguments. The implementation also adds value type polymorphism. That is, while
Effekt does not include parametric effect polymorphism, parametric polymorphism for value
types is supported. There is no interesting interaction, since the universes of blocks, effects,
and values are strictly separated.

6.2.1 Builtin Effects
The implementation of Effekt separates user defined effects representing control effects (as
presented in Section 2) from builtin effects, such as printing to a console or accessing the
network. Like user effects, builtin effects are tracked by the effect system, however, they
cannot be handled by users and simply propagate to the top level (that is, the main function).
In consequence, programs with unhandled builtin effects can be executed, while the type
checker prevents programs with unhandled user-defined effects from being evaluated. Since
builtin effects do not capture the continuation and cannot be handled by users, they also
do not require capability passing. The implementation selectively only performs capability
passing for user-defined effects.

TR 2020

22 Effekt: Lightweight Effect Polymorphism for Handlers

6.2.2 Local Mutable State

Algebraic effects have been conceived in the setting of functional programming. Yet, Effekt
supports a number of “imperative” features such as iteration with while and local mutable
state. In presence of control effects, the latter is particularly interesting. Let us assume the
example on the left, which is adapted from Brachthäuser et al. [11]:

try {
var x = 0
if (do Choice()) { x = 2 } else { () }
println(x)

} with Choice { () ⇒
resume(true); resume(false)

}

var x = 0
try {

if (do Choice()) { x = 2 } else { () }
println(x)

} with Choice { () ⇒
resume(true); resume(false)

}

Here, the Choice effect (Section 2) is handled by first resuming with true and then resuming
again with false. In Effekt, mutable variables are treated as effects local to the scope
they are declared in and var x = 0; s can be understood as state(0) { x ⇒ s }. Since
the Choice effect is handled outside of the scope, the example prints 2 and then 0, which
corresponds to separately evaluating the two paths of control flow. Changing the example
to the one on the right, which is nested differently, it now prints 2 twice. The change to
2 persists between the two executions since variable x is defined outside of the handler for
Choice. The implementation of local mutable state in Effekt follows Brachthäuser et al. [11]
who in turn build on the work by Kiselyov et al. [26]: The monad for delimited control is
extended by also storing state frames on the stack. On continuation capture, the state is
copied and on a call to the continuation it is restored. This way, it is guaranteed that we get
the expected interaction between mutable state and delimited control.

6.3 Case Studies

To practically evaluate the language design of Effekt and to analyze the severity of the
limitations imposed by treating blocks as second class, we implemented several medium
sized case studies. The implemented case studies range over various domains from language
implementation techniques (such as lexing, parsing, tree transformations, and pretty printing),
over build systems [38], to natural language DSLs [37]. We also implemented many small
examples from domains such as pull and push-based streams, probabilistic programming, and
automatic differentiation. Here, we report on our experience in developing those case studies,
describe encountered limitations and workarounds, and highlight interesting examples related
to effect polymorphism and second-class values. We use Koka as a point of comparison, but
most of the concepts we illustrate also apply to other languages with row-polymorphic effects
and handlers.

6.3.1 Lexer: Pull-based Streams

Based on the motivating example from Section 2.2, in our case studies we implement a lexer
effect with the signature on the left. Like in Koka [32], effect signatures in our implementation
of Effekt can group multiple effect operations.

Brachthäuser, Schuster, and Ostermann 23

effect Lexer {
def peek(): Option[Token]
def next(): Token

}

try {
var index = 0;
def eos(): Boolean = index ≥ in.length
...

} with Lexer { ... }

Instead of feeding tokens from a given list, we implemented a handler for the Lexer effect that
analyses a given input string. The handler uses a local mutable reference index to store the
current position in the string. It also makes extended use of local function definitions, such as
eos on the right, which close over index. In Koka, the type checker would reject the program
on the right, since the type annotation on eos with the empty effect set does not match
the expected type, which in Koka is local<_h> Boolean. The Koka language translates
mutable variables and references to a synthesized state effect (such as local<_h>). Built
around row-polymorphism, the details of this encoding and the corresponding synthesized
effects leak into the type of user programs [33]. In contrast, Effekt builds on second-class
functions to achieve the same safety. In consequence, there is no such “State” effect that
could leak to the user, making it much more natural to work with locally defined effects in
general and with local variables in particular. Recalling the typing rule Def (Section 3.2):
all effects that are not mentioned on a block must be handled at the definition site of the
block. This is safe, since the block eos cannot leave the scope of its definition.

6.3.2 Parser
As illustrated in Section 2.4, we can use our extended implementation of lexers to describe
parsers and our case studies expand on this idea. Modeling parsers with effects allows us
to implement the parsing strategy in the handler. For instance we can describe depth-first
strategies which enumerate either only the first, or all possible results. However, the restriction
of blocks to be second-class prohibits us from writing handlers for breadth-first strategies [11].
To implement breadth-first parsers, it would be necessary to store continuations in a queue.
However, since continuations are blocks and blocks are second class, we cannot do this in
Effekt.

6.3.3 ANF-Transformation
By giving us access to delimited continuations, effect handlers help us to express structured
tree transformations. For example, we can implement a transformation of expression trees
into A-normal form. Let us assume data types for the abstract syntax of a language that
explicitly distinguishes between effectful statements (Stmt) and pure expressions (Expr).

effect Fresh(): String
effect Bind(stmt: Stmt): Expr

def bindHere { prog: Stmt / Bind } : Stmt / Fresh =
try { prog() }
with Bind { (stmt) ⇒

val id = do Fresh()
Let(id, stmt, resume(Var(id)))

}

We can use the Bind effect operation to locally transform a statement into an expression.
The handler bindHere handles the Bind effect by generating a fresh variable and inserting a
binder for the provided statement stmt. In Koka, the inferred type of bindHere would be

forall<e> (prog : () → <fresh,bind|e> int) → <fresh|e> int

TR 2020

24 Effekt: Lightweight Effect Polymorphism for Handlers

Here we can see again two important differences: First, Koka uses parametric effect poly-
morphism and thus quantifies over the effect row e. Second, by use of row polymorphism
and ML-style unification, the use of Fresh in the handler propagates into the type of the
argument prog. As we discuss in Section 7.1.2, this breaks effect encapsulation since it leaks
(effect-)implementation details into the signature.

6.3.4 Pretty-Printer

Similar to how parsers can be implemented by backtracking search, we can also use effects
and handlers to describe pretty printers. In an extended case study, we implemented a pretty
printing library that conceptually resides between the imperative presentation of Oppen [40]
and the functional presentation of Swierstra and Chitil [50]. It combines multiple different
uses of effects, such as effects for dynamically bound variables [12], backtracking search, and
writing to an output stream. For example, we use effects to abstract over the indentation
level and the layouting direction, which are context dependent.

type Direction {
Horizontal();
Vertical()

}
effect Indent(): Int
effect DefaultIndent(): Int
effect Flow(): Direction

def direction[R](dir: Direction) { doc: R / Flow }: R =
try { doc() }
with Flow { () ⇒ resume(dir) }

def horizontal { p: Unit / Flow }: Unit =
direction(Horizontal()) { p() }

The effect Flow represents the current layouting direction and the effect Indent represents
the context-dependent indentation level. To express the handler horizontal on the right, it
would be convenient to partially apply the direction function such as:

val horizontal = direction(Horizontal()) // ERROR

However, in Effekt this is not possible since functions cannot be returned. As a commonly
encountered workaround, we have to η-expand the definition of horizontal. To express
pretty printers, we use two additional effects. An effect to output the rendered document
(Emit) and an effect for choice-points in the layout (LayoutChoice).

effect Emit {
def text(content: String): Unit
def newline(): Unit

}

effect LayoutChoice {
def fail[A](): A
def choice(): Direction

}

The LayoutChoice effect is very similar to the non-determinism effect with Fail and
Choice from Section 2. As an example, the pretty-printing combinator group [50] uses
non-deterministic choice to decide the layouting direction of a document.

def group { p: Unit / Flow } =
direction(choice()) { p() }

def line() = do Flow() match {
case Horizontal() ⇒ text(" ")
case Vertical() ⇒ newline()

}

Using group and line we can define conditional linebreaks as group { line() }, which
inserts a linebreak if the remainder does not fit into the available space. Finally, we assemble
the handler pretty for pretty printed document descriptions from multiple other handlers.

Brachthäuser, Schuster, and Ostermann 25

def searchLayout[R] { p : R / LayoutChoice }: Option[R]
def writer { p: Unit / Emit }: String
def printer {

prog: Unit / { Emit, Indent, DefaultIndent, Flow }
} : Unit / { Emit, LayoutChoice }

effect Pretty = { Emit, Indent, DefaultIndent, Flow, LayoutChoice }
def pretty { doc: Unit / Pretty }: Option[String] =

searchLayout { writer { printer { doc() } } }

Again, in Koka the above would not typecheck. The signature of printer would be polymorphic
in an effect row e.

forall<e> (() → <emit,indent,defaultIndent,flow|e> int) → <emit,layoutChoice|e> int

Since doc can use LayoutChoice in addition to effects that are explicitly mentioned in
the type of prog, at the callsite of printer the row variable e would be instantiated to
LayoutChoice. In consequence, the inferred type of the call to printer is

<emit, layoutChoice, layoutChoice> ()

It contains two copies of LayoutChoice in its row. Only one copy is handled by searchLayout
and the overall type of pretty thus still mentions LayoutChoice! We can resolve this
problem by adding LayoutChoice to the type of prog in the signature of printer. But
this is a change to the definition of printer that is motivated by a particular use of
printer, and the signature of printer would then say that its implementation could handle
the LayoutChoice effect, which it does not do. While it is sometimes possible to resolve
problems like this by changing type signatures of involved functions or by advanced use of
term level adjustments [33, 14], lexically scoped effects and contextual effect polymorphism
in Effekt avoid this class of problems altogether.

6.3.5 Automatic Differentiation
The restriction to second-class blocks implies that blocks can neither be returned from
functions, nor can they be stored in data structures. One common use of the former is curried
application. A common workaround is to η-expand the definition. In order to allow storing
blocks in data structures, one can manually perform defunctionalization. While in some
cases this is a viable approach, some application domains inherently rely on function spaces.

One example of such a domain is automatic differentiation (AD). Wang et al. [52] propose
to use delimited continuations to implement reverse-mode AD. While the presented techniques
readily carry over to effect handlers (and can be applied in Effekt), in this domain it would
be natural to talk about functions as a first-class concept. For example, one could try to
implement a handler grad that takes a function Num ⇒ Num / AD, which uses the AD effect,
to its derivative.

def grad { prog: Num ⇒ Num / AD } : Double ⇒ Double

The returned function would close over prog which could have arbitrary other effects. In
Effekt, this is not possible and we have to define grad with the following signature:

def grad(in: Double) { prog: Num ⇒ Num / AD } : Double

Another domain that suffers from a similar restriction is probabilistic programming. While
effect handlers have been shown to be suitable to modularize the description of models

TR 2020

26 Effekt: Lightweight Effect Polymorphism for Handlers

and inference algorithms [39, 8, 43], models are typically represented by functions and it is
necessary to treat them as first class. Manual defunctionalization of models is possible in
some cases but requires work and the result is less natural.

7 Discussion and Related Work

In this paper, we introduced a language with effect handlers, based on a new reading of
effect types as contextual requirements. In this section, we compare Effekt with other
implementations of effect handlers and discuss prior work related to the contextual reading
(summarized in Figure 7).

7.1 Effect Handlers
Section 2 illustrated that, despite the different reading of effect types, programming in Effekt
with first-order functions is not much different from programming in other languages with
effect handlers. However, for higher-order functions we can observe significant differences.
Let us assume the following implementation for our motivating example from Section 1.

def eachLine(file: File) { f: String ⇒ Unit / {} }: Unit / { FileIO, Console } =
try {

while (hasNext(file)) { f(nextLine(file)) }
} with Exception { () ⇒ println("error reading file") }

The implementation of eachLine handles exceptions that arise from the interaction with
files via hasNext and nextLine by printing an error message.

7.1.1 Accidental Capture
In our motivating example the block passed to eachLine used exceptions:

eachLine { (line) ⇒ if (line == "") { do Exception() } else { ... } }

What happens if the file indeed does contain an empty line? In many languages with support
for exception handling (like Java, JavaScript, OCaml, and others) the exception will be caught
by the dynamically closest handler. This example would thus print "error reading file".
For the user of eachLine this might come as a surprise, as she would have expected it to
print "empty line". This behavior exposes an implementation detail of eachLine, which
is clearly undesirable. We call this behavior accidental capture, since the type of eachLine
does not mention Exception and eachLine should not be able to intercept exceptions.

Zhang et al. [58] propose a solution to avoid accidental capture in the context of exceptions
in Java-like languages. They distinguish between code that is aware of a certain exception
and oblivious code. Only code that is aware of an exception can handle them, exceptions are
tunneled otherwise. They also translate methods that throw exceptions to receive and pass
along an additional parameter that will be a label at runtime, similar to labels in System Ξ.
Furthermore, they also distinguish first-class (precise) and second-class (imprecise) functions
and prevent the latter ones from being returned. Their calculus features parametric effect
(i.e., label) polymorphism, which is inferred and hidden from the user. To achieve this, they
use intraprocedural program analysis to solve constraints arising from the use of exceptions
and handlers and generalize at procedure boundaries. Their type system is strictly more
general, as it allows for first-class functions when they are safe to use, but arguably also
more complicated. While they are concerned solely with exceptions, in this work we are

Brachthäuser, Schuster, and Ostermann 27

Effect Capture- Effect Encapsulation Contextual
Safe free Handlers without Lifts Effect Polym.

Effect handlers without static checks
Plotkin and Pretnar [44] 7 7 3 — —
Dolan et al. [18] 7 7 3 — —
Brachthäuser and Schuster [9] 7 3 3 — —

Effect handlers with static checks
Bauer and Pretnar [2] 3 3 3 — —
Leijen [32] 3 3 3 7 7

Lindley et al. [36] 3 3 3 7 7

Hillerström and Lindley [23] 3 3 3 7 7

Lexical effect handlers with static checks
Zhang and Myers [57] 3 3 3 3 7

Brachthäuser et al. [11] 3 3 3 3 7

Biernacki et al. [7] 3 3 3 3 7

Second-class values
Osvald et al. [41] 3 — 7 3 3

Zhang et al. [58] 3 3 7 3 3

Effekt 3 3 3 3 3

Figure 7 Summary of related work.

concerned with the more general concept of effect handlers, which requires a sound treatment
of resumptions.

7.1.2 Dynamically Scoped Effects
The problem of accidental capture also arises in languages with effect handlers that have
a dynamic semantics based on searching the stack for a matching handler [44, 16, 32, 36].
These languages can be grouped according to whether they statically check effects or not.

Languages without effect systems Languages without a static effect system like Eff [44] or
MultiCore OCaml [16] do not guarantee effect safety and accidental capture happens silently.
By absence of an effect system, these languages support effect polymorphic reuse, trivially.

Effect systems based on rows Languages with effect-systems based on row polymorphism
like Koka [32], Frank [36], or Links [23] guarantee effect safety and support effect polymor-
phism in the form of parametric effect polymorphism. While these languages still exhibit
accidental capture, this behavior is less surprising because it is reflected in the types. In
Koka, for example, the inferred signature of eachLine would be:

eachLine : (file, string → <exception|e> ()): <fileio,console|e> ()

This type clearly states that eachLine can intercept exceptions thrown by its function argu-
ment. However, there is a flip side of the coin: the fact that eachLine uses exceptions in its
implementation leaks into the type of its parameter f. This correctly reflects the runtime se-
mantics: exceptions raised by f are handled by eachLine resulting in "error reading file".
To encapsulate this implementation detail, some languages require the user to manually
use term-level lifting constructs [5, 34, 14]. For example, in Koka the call to the argument
function f would need to be enclosed in a lift to express that any exceptions in f should not

TR 2020

28 Effekt: Lightweight Effect Polymorphism for Handlers

be handled by the next enclosing handler inject<exception>({ f(nextLine(file)) }).
These lifting constructs come with their own complications [14] and our own experience
working in these languages confirms that they pose a major usability issue, even in medium-
sized programs. The need for them is a consequence of the operational semantics based on
dynamic handler search in these languages.

7.1.3 Lexically Scoped Effects
More recent languages with effect handlers implement lexically scoped effects. In those
languages, effect operations are not handled by their dynamically closest handler, but instead
a lexical relation between handlers and effect operations is established. These languages do
not suffer from accidental capture. Again, we can organize the languages according to the
presence of a static effect system.

Languages without effect systems Like System Ξ, implementations based on explicit [10]
or implicit [9] capability passing avoid the problem of accidental capture by closing over the
lexically scoped capability. Bauer and Pretnar [3] explicitly pass effect instances and avoid
the problem of accidental capture. Without a static effect system, those languages do not
guarantee effect safety.

Languages without effect polymorphism Bauer and Pretnar [2] present an effect system
for a language with effect handlers. They assume a statically fixed set of effect instances,
which are term-level constants. Instances are in spirit similar to capabilities and allow
programmers to disambiguate operations for the same effect, corresponding to different
handlers. In contrast to our capabilities, instance expressions are first-class and their types
have to statically approximate the (set of) effect instances the expression could stand for.
While in System Ξ, capabilities are created and bound at handlers, handlers in the work
of Bauer and Pretnar [2] can be parametrized by the effect instance. In some cases those
instances are not known statically, and thus the handler cannot remove the instance from
the effect type of the handled expression. The most important difference to the present work,
is that the language that they present does not feature effect polymorphism. Instead, in
first-order programs code reuse at different effect types is achieved with subtyping. They,
however, do not discuss how to achieve code reuse of higher-order functions.

Schuster et al. [48] present a technique for compiling effect handlers in capability-passing
style. Just like our language System Ξ, their language λCap is in explicit capability-passing
style. They explore compiler optimizations for languages with effect handlers, while we
explore effect systems from a user perspective. While System Ξ does not have an effect
system and relies on blocks being second-class to ensure effect safety, their language indexes
effectful computations with a list of answer types to ensure effect safety. They do not feature
effect polymorphism and assume that all programs have been monomorphized. They use the
statically known list of answer types to translate their programs to iterated continuation-
passing style [47], while we use a library for multi-prompt delimited continuations [19]. It
would be interesting to connect the two approaches by inferring the list-structured effect
types for System Ξ.

Languages with parametric effect polymorphism Languages with lexically scoped handlers
are equipped with effect systems [57, 11, 7] and track a set of effect instances on the type level.
By establishing a lexical binding, lifting annotations are not required while guaranteeing
effect parametric reasoning [57]. However, the effect systems of these languages are typically

Brachthäuser, Schuster, and Ostermann 29

quite involved and often require limited forms of dependent types. Furthermore, they only
support parametric effect polymorphism.

Xie et al. [55] provide a connection between dynamically scoped effects and lexcically
scoped effects as a translation from a language with the former to a language with the latter.
They prove that on a subset of the former, which only uses scoped resumptions, the semantics
coincide. Their source language features effect polymorphism based on effect rows [28] while
our source language is based on contextual effect polymorphism. Guided by the effect types,
they translate programs to explicitly pass evidence vectors, very similar to how we translate
programs to explicitly pass individual capabilities.

In summary, in comparison to other languages with effect handlers, Effekt uniquely
guarantees effect safety, avoids accidental capture, and establishes encapsulation without
lifts with a very lightweight effect system based on contextual effect polymorphism.

7.2 Second-class Values
Our treatment of functions as second-class values is inspired by Osvald et al. [41]. They use
second class functions to establish a type-based escape analysis and present case studies for
exceptions, memory regions, and well-scopedness in program generation. In this paper, we
generalize the calculus of Osvald et al. [41] to effect handlers, and present a language design
around this insight.

7.2.1 Limitations
The work by Osvald et al. [41] and Zhang et al. [58] suggests that it is viable to add first-class
functions to Effekt. However, we purposefully refrained from doing so to focus on studying
the combination of effect handlers and second-class functions (blocks). While a large class of
programs using effect handlers is still expressible in Effekt despite this restriction, we want
to single out three representative examples from the literature that are not.

Functional State Effect handlers can encode state [45] by interpreting the Get and Put
operations into an answer type that is a function. In Effekt, this is not allowed since handlers
cannot return functions. The idiomatic way in Effekt to write a handler for Get and Put is
to use a local reference, which is safe and has the correct backtracking behavior as described
in Section 6.2.2

Scheduler Effect handlers can express structured concurrency with user defined sched-
ulers [17]. In Effekt, this is not possible since it would require to store the continuation in
a data structure (such as a queue). However, in Effekt continuations are blocks and can
neither be returned, nor stored in data structures. In our implementation of Effekt we resort
to locally unsafe primitives.

Scoped Effects Effect operations that take function parameters are called higher-order
operations or scoped [54]. To establish effect safety, effect operations in Effekt cannot take
block arguments. Allowing effect operations to take block arguments would break effect
safety, since this way blocks could close over capabilities that in turn would leave their
defining scope [11]. This way, examples like the async effect by Leijen [30] are ruled out in
Effekt:

effect async { fun await(initiate : (result<a> → io ()) → io ()) : result<a> }

TR 2020

30 Effekt: Lightweight Effect Polymorphism for Handlers

However, it is possible to define an API in Effekt that is based on promises [18].

7.3 Coeffects
The general idea of expressing requirements on the context in the type is not new and can in
similar form be found in coeffect systems [42]. Petricek et al. describe a calculus that can
be instantiated to express (amongst others) implicit variables. We also interpret effects as
a requirement on the calling context. In consequence, some details of the effect system of
Effekt align with their coeffect system for implicits. In particular, effects in Def (Figure 3.2)
can also be handled either at the call-site or the definition-site. Petricek et al. [42] refer to
those requirements as latent or immediate, correspondingly. While the effect system of Effekt
has some similarities to coeffects, we also allow for control effects. In consequence, while
implicit variables (once resolved) are treated as first class, the type-system of Effekt needs to
assert that capabilities cannot escape the region of their handler. Effekt can thus be seen as
a combination of a coeffects, second-class values, and delimited control. In this paper, we
present a practical language design employing the contextual perspective. In the future, we
hope to formally establish the relation to coeffects.

7.4 Lightweight Polymorphic Effects
Rytz et al. [46] introduces separate function types for effect monomorphic and effect poly-
morphic functions. Applying the latter, the effects of the argument function still have to be
handled at the call-site. This is similar to contextual effect polymorphism and all functions
(i.e., blocks) in Effekt are effect polymorphic in the sense of Rytz et al. [46]. However, in
the calculus of Rytz et al. [46], functions are either fully polymorphic or monomorphic. It is
thus not clear how to express handler functions like always42 (Section 2) that mention some
effects on their argument functions, but are polymorphic in the rest.

Summary The design of Effekt aims at exploring a sweet spot between simplicity and
expressiveness. In particular, the Effekt language: guarantees effect safety – all user defined
control effects are eventually handled; avoids accidental capture – effects not mentioned in a
signature cannot be observed; supports effect handlers – advanced control-flow constructs
can be expressed as libraries; guarantees effect encapsulation – implementation effects are not
leaked into the signature; supports contextual effect polymorphism – higher order functions
can be used effect polymorphically without having to quantify effect variables.

8 Conclusion

In this paper, we have taken a novel view on effect systems for languages with effect handlers.
Traditionally, effect types express which side effects a computation might have, besides
computing the resulting value. Instead, we have assumed a different interpretation where
effect types express which capabilities a computation requires from its context. This different
perspective opens up a novel design space, offering different trade-offs. On the negative side,
we lose purity guarantees since contextual purity does not imply purity. The restriction to
blocks instead of first-class functions also entails some expressiveness limitations. On the
positive side, the language design becomes very simple. Parametric effect polymorphism
is not needed anymore (and replaced by lightweight contextual effect polymorphism) and
we can guarantee effect safety and absence of accidental capture. We believe that we have

REFERENCES 31

identified an interesting sweet spot of effect handler design that can contribute to a more
wide-spread adoption of effect handlers in programming languages.

Acknowledgements We are very grateful for the valuable feedback by the anonymous
reviewers. This work was supported by DFG project 282458149.

References

1 H. P. Barendregt. Lambda calculi with types. In Handbook of Logic in Computer Science
(vol. 2): Background: Computational Structures, pages 117–309. Oxford University Press,
New York, NY, USA, 1992.

2 A. Bauer and M. Pretnar. An effect system for algebraic effects and handlers. In
International Conference on Algebra and Coalgebra in Computer Science, pages 1–16,
Berlin, Heidelberg, 2013. Springer.

3 A. Bauer and M. Pretnar. Programming with algebraic effects and handlers. Journal of
Logical and Algebraic Methods in Programming, 84(1):108–123, 2015.

4 N. Benton, C.-K. Hur, A. J. Kennedy, and C. McBride. Strongly typed term representa-
tions in coq. Journal of automated reasoning, 49(2):141–159, 2012.

5 D. Biernacki, M. Piróg, P. Polesiuk, and F. Sieczkowski. Handle with care: Relational
interpretation of algebraic effects and handlers. Proc. ACM Program. Lang., 2(POPL):
8:1–8:30, Dec. 2017. ISSN 2475-1421.

6 D. Biernacki, M. Piróg, P. Polesiuk, and F. Sieczkowski. Abstracting algebraic effects.
Proc. ACM Program. Lang., 3(POPL):6:1–6:28, Jan. 2019. ISSN 2475-1421.

7 D. Biernacki, M. Piróg, P. Polesiuk, and F. Sieczkowski. Binders by day, labels by night:
Effect instances via lexically scoped handlers. Proc. ACM Program. Lang., 4(POPL),
Dec. 2019. doi: 10.1145/3371116.

8 E. Bingham, J. P. Chen, M. Jankowiak, F. Obermeyer, N. Pradhan, T. Karaletsos,
R. Singh, P. Szerlip, P. Horsfall, and N. D. Goodman. Pyro: Deep universal probabilistic
programming. J. Mach. Learn. Res., 20(1):973–978, Jan. 2019. ISSN 1532-4435.

9 J. I. Brachthäuser and P. Schuster. Effekt: Extensible algebraic effects in Scala (short
paper). In Proceedings of the International Symposium on Scala, New York, NY, USA,
2017. ACM. doi: 10.1145/3136000.3136007.

10 J. I. Brachthäuser, P. Schuster, and K. Ostermann. Effect handlers for the masses.
Proc. ACM Program. Lang., 2(OOPSLA):111:1–111:27, Oct. 2018. ISSN 2475-1421. doi:
10.1145/3276481.

11 J. I. Brachthäuser, P. Schuster, and K. Ostermann. Effekt: Capability-passing style
for type- and effect-safe, extensible effect handlers in Scala. Journal of Functional
Programming, 2020. doi: 10.1017/S0956796820000027.

12 J. I. Brachthäuser and D. Leijen. Programming with implicit values, functions, and
control. Technical Report MSR-TR-2019-7, Microsoft Research, 2019.

13 E. Brady. Idris, a general-purpose dependently typed programming language: Design
and implementation. Journal of Functional Programming, 23(5):552–593, 2013.

14 L. Convent, S. Lindley, C. McBride, and C. McLaughlin. Doo bee doo bee doo. Journal
of Functional Programming, 30:e9, 2020. doi: 10.1017/S0956796820000039.

15 O. Danvy and A. Filinski. A functional abstraction of typed contexts. DIKU Rapport
89/12, DIKU, University of Copenhagen, 1989.

16 S. Dolan, L. White, and A. Madhavapeddy. Multicore OCaml. In OCaml Workshop,
2014.

TR 2020

32 REFERENCES

17 S. Dolan, L. White, K. Sivaramakrishnan, J. Yallop, and A. Madhavapeddy. Effective
concurrency through algebraic effects. In OCaml Workshop, 2015.

18 S. Dolan, S. Eliopoulos, D. Hillerström, A. Madhavapeddy, K. Sivaramakrishnan, and
L. White. Concurrent system programming with effect handlers. In Proceedings of the
Symposium on Trends in Functional Programming. Springer LNCS 10788, 2017.

19 R. K. Dybvig, S. L. Peyton Jones, and A. Sabry. A monadic framework for delimited
continuations. Journal of Functional Programming, 17(6):687–730, 2007.

20 R. A. Eisenberg, J. Breitner, and S. Peyton Jones. Type variables in patterns. In
Proceedings of the Haskell Symposium, Haskell 2018, page 94–105, New York, NY, USA,
2018. Association for Computing Machinery. doi: 10.1145/3242744.3242753.

21 M. Felleisen. The theory and practice of first-class prompts. In Proceedings of the
Symposium on Principles of Programming Languages, pages 180–190, New York, NY,
USA, 1988. ACM.

22 C. A. Gunter, D. Rémy, and J. G. Riecke. A generalization of exceptions and control
in ML-like languages. In Proceedings of the Conference on Functional Programming
Languages and Computer Architecture, pages 12–23, New York, NY, USA, 1995. ACM.

23 D. Hillerström and S. Lindley. Liberating effects with rows and handlers. In Proceedings
of the Workshop on Type-Driven Development, New York, NY, USA, 2016. ACM.

24 D. Hillerström, S. Lindley, B. Atkey, and K. Sivaramakrishnan. Continuation passing
style for effect handlers. In Formal Structures for Computation and Deduction, volume 84
of LIPIcs. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2017.

25 O. Kammar, S. Lindley, and N. Oury. Handlers in action. In Proceedings of the
International Conference on Functional Programming, pages 145–158, New York, NY,
USA, 2013. ACM.

26 O. Kiselyov, C.-c. Shan, and A. Sabry. Delimited dynamic binding. In Proceedings of the
International Conference on Functional Programming, pages 26–37, New York, NY, USA,
2006. ACM.

27 D. Leijen. Extensible records with scoped labels. In Proceedings of the Symposium on
Trends in Functional Programming, pages 297–312, 2005.

28 D. Leijen. Koka: Programming with row polymorphic effect types. In Proceedings of the
Workshop on Mathematically Structured Functional Programming, 2014.

29 D. Leijen. Algebraic effects for functional programming. Technical report, MSR-TR-
2016-29. Microsoft Research technical report, 2016.

30 D. Leijen. Structured asynchrony with algebraic effects. In Proceedings of the Workshop
on Type-Driven Development, pages 16–29, New York, NY, USA, 2017. ACM.

31 D. Leijen. Implementing algebraic effects in C. In Proceedings of the Asian Symposium on
Programming Languages and Systems, pages 339–363, Cham, Switzerland, 2017. Springer
International Publishing.

32 D. Leijen. Type directed compilation of row-typed algebraic effects. In Proceedings of
the Symposium on Principles of Programming Languages, pages 486–499, New York, NY,
USA, 2017. ACM.

33 D. Leijen. Algebraic effect handlers with resources and deep finalization. Technical
Report MSR-TR-2018-10, Microsoft Research, April 2018.

34 D. Leijen. First class dynamic effect handlers: Or, polymorphic heaps with dynamic
effect handlers. In Proceedings of the Workshop on Type-Driven Development, pages
51–64, New York, NY, USA, 2018. ACM.

35 P. B. Levy, J. Power, and H. Thielecke. Modelling environments in call-by-value pro-
gramming languages. Information and Computation, 185(2):182–210, 2003.

REFERENCES 33

36 S. Lindley, C. McBride, and C. McLaughlin. Do be do be do. In Proceedings of the
Symposium on Principles of Programming Languages, pages 500–514, New York, NY,
USA, 2017. ACM.

37 J. Maršík and M. Amblard. Introducing a calculus of effects and handlers for natural
language semantics. In International Conference on Formal Grammar, pages 257–272.
Springer LNCS 9804, 2016.

38 A. Mokhov, N. Mitchell, and S. Peyton Jones. Build systems à la carte. Proc. ACM
Program. Lang., 2(ICFP), July 2018. doi: 10.1145/3236774. URL https://doi.org/10.
1145/3236774.

39 D. Moore and M. I. Gorinova. Effect handling for composable program transformations
in edward2. In International Conference on Probabilistic Programming (PROBPROG),
2018.

40 D. C. Oppen. Prettyprinting. Transactions on Programming Languages and Systems, 2
(4):465–483, 1980.

41 L. Osvald, G. Essertel, X. Wu, L. I. G. Alayón, and T. Rompf. Gentrification gone too
far? affordable 2nd-class values for fun and (co-) effect. In Proceedings of the Conference
on Object-Oriented Programming, Systems, Languages and Applications, pages 234–251,
New York, NY, USA, 2016. ACM.

42 T. Petricek, D. Orchard, and A. Mycroft. Coeffects: A calculus of context-dependent
computation. In Proceedings of the International Conference on Functional Programming,
page 123–135, New York, NY, USA, 2014. ACM. doi: 10.1145/2628136.2628160. URL
https://doi.org/10.1145/2628136.2628160.

43 D. Phan, N. Pradhan, and M. Jankowiak. Composable effects for flexible and accelerated
probabilistic programming in numpyro. arXiv preprint arXiv:1912.11554, 2019.

44 G. D. Plotkin and M. Pretnar. Handling algebraic effects. Logical Methods in Computer
Science, 9(4), 2013.

45 M. Pretnar. An introduction to algebraic effects and handlers. invited tutorial paper.
Electronic Notes in Theoretical Computer Science, 319:19–35, 2015.

46 L. Rytz, M. Odersky, and P. Haller. Lightweight polymorphic effects. In J. Noble, editor,
Proceedings of the European Conference on Object-Oriented Programming, pages 258–282,
Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

47 P. Schuster and J. I. Brachthäuser. Typing, representing, and abstracting control. In
Proceedings of the Workshop on Type-Driven Development, pages 14–24, New York, NY,
USA, 2018. ACM. doi: 10.1145/3240719.3241788.

48 P. Schuster, J. I. Brachthäuser, and K. Ostermann. Compiling effect handlers in capability-
passing style. Proc. ACM Program. Lang., 4(ICFP), Aug. 2020. doi: 10.1145/3408975.
URL https://doi.org/10.1145/3408975.

49 D. Sitaram. Handling control. In Proceedings of the Conference on Programming Language
Design and Implementation, pages 147–155, New York, NY, USA, 1993. ACM.

50 S. D. Swierstra and O. Chitil. Linear, bounded, functional pretty-printing. Journal of
Functional Programming, 19(01):1–16, 2009.

51 P. Wadler. Programming language foundations in agda. In T. Massoni and M. R.
Mousavi, editors, Formal Methods: Foundations and Applications, pages 56–73, Cham,
2018. Springer International Publishing.

52 F. Wang, D. Zheng, J. Decker, X. Wu, G. M. Essertel, and T. Rompf. Demystifying
differentiable programming: Shift/reset the penultimate backpropagator. Proc. ACM
Program. Lang., 3(ICFP):96:1–96:31, July 2019. ISSN 2475-1421.

TR 2020

https://doi.org/10.1145/3236774
https://doi.org/10.1145/3236774
https://doi.org/10.1145/2628136.2628160
https://doi.org/10.1145/3408975

34 REFERENCES

53 A. K. Wright and M. Felleisen. A syntactic approach to type soundness. Inf. Comput.,
115(1):38–94, Nov. 1994.

54 N. Wu, T. Schrijvers, and R. Hinze. Effect handlers in scope. In Proceedings of the
Haskell Symposium, Haskell ’14, pages 1–12, New York, NY, USA, 2014. ACM.

55 N. Xie, J. I. Brachthäuser, D. Hillerström, P. Schuster, and D. Leijen. Effect handlers,
evidently. Proc. ACM Program. Lang., 4(ICFP), Aug. 2020. doi: 10.1145/3408981. URL
https://doi.org/10.1145/3408981.

56 J. Yallop. Staged generic programming. Proc. ACM Program. Lang., 1(ICFP):29:1–29:29,
Aug. 2017. ISSN 2475-1421.

57 Y. Zhang and A. C. Myers. Abstraction-safe effect handlers via tunneling. Proc. ACM
Program. Lang., 3(POPL):5:1–5:29, Jan. 2019. ISSN 2475-1421.

58 Y. Zhang, G. Salvaneschi, Q. Beightol, B. Liskov, and A. C. Myers. Accepting blame for
safe tunneled exceptions. In Proceedings of the Conference on Programming Language
Design and Implementation, pages 281–295, New York, NY, USA, 2016. ACM.

https://doi.org/10.1145/3408981

REFERENCES 35

Extented Syntax for Operational Semantics:

Runtime Statements s ::= ... | #l { s } delimiters

Runtime Block Values w ::= ... | capl { (x : τ , k : σ) ⇒ s } capabilities

Runtime Labels l ::= @a5f | @4b2 | ... labels

(a) Extended Syntax of System Ξ.
Evaluation Contexts:

Contexts E ::= � | val x = E; s | #l { E }

Delimited Contexts Hl ::= � | val x = Hl ; s | #l′ { Hl } where l 6= l ′

Reduction Rules:

(let) val x = v; s −→ s[x 7→ v]

(fun) def f = w; s −→ s[f 7→ w]

(app) ({ (x, f) ⇒ s })(v, w) −→ s[x 7→ v, f 7→ w]

(ret) #l { v } −→ v

(handle) handle { F ⇒ s } with { (x, k) ⇒ s′ } −→ #l · s[F 7→ capl { (x, k) ⇒ s′ }] where l fresh

(cap) #l · Hl · (capl { (x, k) ⇒ s })(v) −→ s[x 7→ v, k 7→ { y ⇒ #l · Hl · y }]

Congruence:

(cong) If s −→ s′ then E[s] 7−→ E[s′]

(b) Operational semantics of System Ξ.

Figure 8 Operational semantics of the core language System Ξ.

A Appendix

A.1 Operational Semantics of System Ξ
Figure 8 defines the operational semantics of System Ξ as a variant of multi-prompt delimited
continuations [22, 19]. The presentation of the operational semantics in Figure 8b is based
on delimited evaluation contexts and follows Leijen [32] (who in turn follows Wright and
Felleisen [53]). We first define the syntax of contexts E, then define a one-step reduction
relation −→. The standard rule for congruence (cong) gives rise to a reduction relation 7−→,
which admits reduction under a context E.

The syntax of contexts E includes empty contexts �, statements to be evaluated later
val x = E; s, and delimiters #l { E }. Additionally, we define delimited contexts Hl where
the label l does not appear in any delimiters. This way, captured continuations are always
delimited by the dynamically closest delimiter.

Notation In the description of the operational semantics, we sometimes omit type an-
notations, write τ → τ ′ for (τ) → τ ′, and { x ⇒ s } for { (x : τ) ⇒ s } correspondingly.
Additionally, we follow Leijen [31] and use right associative dot notation, a syntactic ab-

TR 2020

36 REFERENCES

breviation for working with evaluation contexts. We write E · s for E[s] and #l · s for
#l { s }. Dot notation emphasizes a stack intuition of evaluation contexts, with the stack
growing from left to right. This way the context E1[#l { E2[s] }] can concisely be written
as E1 · #l · E2 · s.
The one-step reduction relation −→ relates a redex with its reduct. Rules (let), (fun), and
(app) are completely standard and use capture avoiding substitution of values (and blocks),
which we denote as s[x 7→ v]. Rule (handle) and rule (cap) are described in the main text
(Section 4.3). Rule (ret) allows a value to leave a delimiter by simply dropping the delimiter.
To ensure effect safety, it is critical that only values and not block values can leave the scope
of a delimiter since otherwise capabilities could escape.

A.2 Extended Typing of System Ξ
Figure 9 extends the type system of System Ξ to account for the additional runtime constructs.
To guarantee soundness and in particular effect safety, typing judgements for statements and
blocks include the label context Ξ. The label context Ξ is an ordered mapping of runtime
labels to the types of their introducing delimiters. It approximates the shape of the evaluation
context in which a well-typed statement can safely be reduced. The label context helps us to
express invariants that we will show to hold during evaluation.

The abbreviated typing rules of System Ξ in Figure 4 did not interact with the label
context, which becomes visible in the full definitions in Figure 9. This is different for rule
Delimit, which types a delimited statement s in a larger label context, extended with a pair
of label l and type τ . The answer type τ is the type of the delimited statement and the type
of the overall statement.

Symmetrically, the premise of rule Cap requires that the label context Ξ contains the
label l and can be split into a prefix Ξ1 and a suffix Ξ2. Only the prefix is relevant for typing
the body s: Intuitively, the prefix Ξ1 contains labels of delimiters that were in scope when
the capability was originally introduced. Remember how calling a capability captures the
continuation and the capability’s handler implementation s is evaluated in a smaller context.
Similarly, the handler implementation s is typed under the prefix Ξ1. Finally, the rule assigns
block type τ1 → τ0 to the overall capability.

A.3 Soundness of System Ξ
In our mechanized formalization, we represent System Ξ terms by their typing derivations
[51] and show progress constructively by implementing operational semantics as a total step
function.

A.3.1 Preservation
Here, we discuss relevant lemmas, necessary to prove preservation (Theorem 4.4). For
illustration, we use the Example 4.1, which we repeat here for convenience.

I Example 7. We assume an effect operation Yield : Int → Int.
handle { Yield ⇒ val x = Yield(20); x ∗ 2 } with { (x, k) ⇒ k(x + 1) }

Reducing handle introduces a fresh label (e.g., @a1) and uses it to delimit the handled
program. It also introduces a capability and substitutes it for Yield:

#@a1 { val x = (cap@a1 { (x, k) ⇒ k(x + 1) })(20); x ∗ 2 }

Applying rule (cap), we obtain (captured stack segment highlighted in grey):

REFERENCES 37

k(20 + 1) where k = { y ⇒ #@a1 { val x = y; x ∗ 2 } }
. . .

Substitution of Capabilities Applying reduction rule (handle) introduces a fresh label (e.g.,
@a1), creates a capability delimited at that label, and substitutes it for Yield. To show that
this reduction step preserves types, we need the usual substitution lemma for values.

I Lemma 8 (Expression value substitution). Given a statement Γ, x : τ ′ ∆ Ξ ` s : τ

and a value Γ ` v : τ ′, we have Γ ∆ Ξ ` s[x 7→ v] : τ .

Additionally, to account for substituting the capability into the handled statement, we also
require a corresponding lemma for blocks:

I Lemma 9 (Block value substitution). Given a statement Γ ∆, f : σ Ξ ` s : τ and a
block value Γ ∆ Ξ ` w : σ, we have Γ ∆ Ξ ` s[f 7→ w] : τ .

Originally, the body of the capability (i.e., k(x + 1)) has been typed outside of the handle
statement. We need to adjust the typing derivation to a larger context, including additional
delimiters such as #@a1. This is captured in Lemma A.4.

I Lemma 10 (Label context weakening). If Γ ∆ Ξ ` s : τ then for l 6∈ Ξ and Ξ = Ξ1, Ξ2,
we have Γ ∆ Ξ1, l : τ ′, Ξ2 ` s : τ .

This lemma states that label contexts can be weakened, that is, unused delimiters do not
influence the typing of a statement.

Labels are in Context To prove Theorem 4.4, we additionally need to establish a corre-
spondence between the approximation of the label context Ξ and the actually bound labels
in evaluation context E. For notational convenience, we write E : τ1 → τ2 to express that a
context E can be assigned a type τ2, given its hole has type τ1. That is, for some fresh x we
have Γ, x : τ1 ∆ Ξ ` E[x] : τ2.

We define label extraction of the evaluation context as:

d�e = ∅ dval x = E; se = dEe d#l { E }e = l, dEe

The correspondence between labels in Ξ and delimiters in E is established in Lemma A.5.

I Lemma 11 (Correspondence of labels). If Γ ∆ Ξ ` E[s] : τ where E : τ ′ → τ , then
Γ ∆ Ξ, Ξ′ ` s : τ ′ with dEe = Ξ′.

Furthermore, a welltyped statement s can be plugged into welltyped evaluation context E. If
the context binds labels Ξ′, those do not need to be included in the resulting label context,
since E satisfies those labels.

I Lemma 12 (Context Plugging). Given E : τ → τ ′ and dEe = Ξ′, if Γ ∆ Ξ, Ξ′ ` s : τ

then Γ ∆ Ξ E[s] : τ ′.

Proof. We prove correspondence of labels (Lemma A.5) by induction over the shape of the
evaluation context E.

Case E = �. Since E[s] = s, we can reuse the original typing derivation and compute
dEe = ∅.

Case E = val x = E′; s′. By inversion, the only applicable rule to type check E[s] is
Val. This gives us the premises

TR 2020

38 REFERENCES

(1) Γ ∆ Ξ ` E′[s] : τ ′′ and
(2) Γ, x : τ ′′ ∆ Ξ ` s′ : τ .

From (1) we can derive that E′ types as τ ′ → τ ′′. We can apply the induction hypothesis on
the smaller E′ and get Γ ∆ Ξ, Ξ′ ` s : τ ′ with dE′e = Ξ′. We can now compute that
dEe = dval x = E′; s′e = dE′e = Ξ′.

Case E = #l { E′ }. By inversion, the only applicable rule is Delimit. This gives us
the premise

(1) Γ ∆ Ξ, l : τ ` E′[s] : τ

Again, from the induction hypothesis and (1) we get Γ ∆ Ξ, l : τ , Ξ′ ` s : τ ′ with
dE′e = Ξ′. We can compute that dEe = d#l { E′ }e = l, dE′e = l, Ξ′. J

Proof of Preservation
Given the above lemmas, we can prove preservation (Theorem 4.4) as follows. Theorem 4.4 is
defined in terms of 7−→. We can specialize it to congruence and obtain the following variant:

I Theorem 13 (Preservation in Context). If Γ ∆ ∅` E[s] : τ , E : τ ′ → τ , and s −→ s′,
then Γ ∆ ∅` E[s′] : τ .

Proof. Applying Lemma A.5, we can obtain Γ ∆ Ξ ` s : τ ′ with dEe = Ξ.
Proof by case distinction on the reduction rule applied to the redex:

case (let):
We have val x = v; s′′ −→ s′′[x 7→ v] and the premises of Val give us:

(1) Γ ∆ Ξ ` v : τ ′′ and
(2) Γ, x : τ ′′ ∆ Ξ ` s′′ : τ ′.

Applying (let) gives us s[x 7→ v]. By substitution lemma (Lemma A.2) on (1) and (2),
we obtain
Γ ∆ Ξ ` s′′[x 7→ v] : τ ′. By Lemmas A.5 and A.6, we finally obtain Γ ∆ ∅` E[s′′[x 7→ v]] : τ .

case (fun)
Analogous to (let), but using the substitution lemma for blocks (Lemma A.3) modulo
label context weakening of Ξ (Lemma A.4).

case (ret)
We have #l { v } −→ v. From rule Delimit we get:

(1) Γ ∆ Ξ, l : τ ′ ` v : τ ′.

Since v is typed by Expr, without any labels, we can pick an arbitrary label context
Ξ and derive Γ ∆ Ξ ` v : τ ′. By Lemmas A.5 and A.6, we obtain Γ ∆ ∅` E[v] : τ .

case (app)
Similar to (let) and (fun).

case (handle)
We have handle { F ⇒ s′′ } with { (x, k) ⇒ s′′′ }

−→ #l · s′′[F 7→ capl { (x, k) ⇒ s′′′ }] where l fresh. From rule Handle, we
get

(1) Γ ∆, F : τx → τF Ξ ` s′′ : τ ′ and
(2) Γ, x : τx ∆, k : τF → τ ′ Ξ ` s′′′ : τ ′.

Using (2) and choosing Ξ2 = ∅, we can apply Cap and type
Γ ∆ Ξ, l : τ ′, ∅` capl { (x, k) ⇒ s′′′ } : τx → τF (3). Finally, we use (1), substi-

REFERENCES 39

tution on (1) and (3), context weakening (Lemma A.4) and rule Delimit to obtain
Γ ∆ Ξ ` #l · s′′[F 7→ ...]. We can apply context weakening, since l is fresh.

case (cap)
We have #l · Hl · (capl { (x, k) ⇒ s′′ })(v) −→ s′′[x 7→ v, k 7→ { y ⇒ #l · Hl [y] }]
We use Lemma A.5 to obtain:
Γ ∆ Ξ, Ξ′ ` (capl { (x, k) ⇒ s′′ })(v) : τ ′′ with d#l { Hl }e = Ξ′.

From rule Call, we have

(2) Γ ∆ Ξ, Ξ′ ` capl { (x, k) ⇒ s′′ } : τ1 → τ ′′,
(1) Γ ∆ ` v : τ1,

From rule Cap, we have

(3) Γ, x : τ1 ∆, k : τ ′′ → τ ′ Ξ ` s′′ : τ ′.

We are left to show that Γ ∆ Ξ ` { y ⇒ #l · Hl [y] } : τ ′′ → τ ′, that is,
Γ, y : τ ′′ ∆ Ξ ` #l · Hl [y] : τ ′ (using rule Block). We can show this by reusing the
original typing derivation, replacing the derivation tree for (capl { (x, k) ⇒ s′′ })(v), by
the assumption Γ(y) = τ ′′ and rule Var

J

A.3.2 Semantic Soundness
In our mechanized formalization, show progress constructively by implementing operational
semantics as a total step function. For ease of presentation, here we adapt the proof of Leijen
[32] to our calculus. Leijen uses techniques from Wright and Felleisen [53] identifying
unhandled effects as faulty expression and then showing, that those faulty expressions cannot
be typed. Similarly, Definition 4.2 identified unhandled effects as faulty statements.

To proof soundness, like Leijen [32], we define the following lemma.

I Lemma 14 (Label contexts are meaningful). If Γ ∆ Ξ ` Hl [(capl { (x, k) ⇒ s′ })(v)] : τ ,
then l ∈ Ξ.

This lemma states that label contexts are meaningful: if a capability refers to a runtime
label l and this label is not delimited in the evaluation context, then l has to be part of the
label context Ξ.

Proof. By induction over the context Hl . For the base case, rule Cap requires that
Ξ = Ξ1, l : τ , Ξ2, so l ∈ Ξ. For case val x = H′l ; s, we have by induction that l ∈ Ξ
and Ξ is preserved by rule Val. Finally, for case #l′ { H′l } where l 6= l ′, we have that
l ∈ Ξ, l ′. Rule Delimit only binds l ′, so l ∈ Ξ. J

In consequence, only delimiters #l can introduce labels in the context Ξ.
We are finally ready to state semantic soundness of System Ξ as follows:

I Theorem 15 (Semantic Soundness of System Ξ). If ∅ ∅ ∅` s : τ , then reducing s
diverges, or s 7−→∗ v.

Proof. By contradiction: Starting from ∅ ∅ ∅` s : τ , let us assume we have a series of
reductions s 7−→∗ Hl [(capl { (x, k) ⇒ s′ })(v)] such that l is unhandled. By Lemma A.8,
we know that l needs to be in the label context, which (by preservation, Theorem 4.4) is
empty contradicting our assumption. J

TR 2020

40 REFERENCES

A.4 Preservation of Well-typedness
Proof of Theorem 6. The translation from Effekt to System Ξ preserves well-typedness,
which we show by induction over the typing derivations of the source language. Here, we
only give the proof for the most interesting case Def. Given

Γ ∆ Σ ` def f (x : τ , g : σ) : τ0 / ε0 = s0; s : τ (ε′
0 \ ε0) ∪ ε

we need to show:
Γ T J∆K + T J(ε′

0 − ε0) + εK ∅` SJdef f (x : τ , g : σ) : τ0 / ε0 = s0; sK : τ

From the premises, we have:

Γ, x : τ ∆, g : σ Σ ` s0 : τ0 ε′0 (1)
Γ ∆, f : (τ , σ) → τ0 / ε0 Σ ` s : τ ε (2)

Applying the definition of SJ · K and typing rule Def, leaves us to show:
Γ T J∆K + T J(ε′

0 \ ε0) ∪ εK ∅` { (x, g, F1, ..., Fn) ⇒ SJ s0 K } : (τ , σ, T JF1K, ..., T JFnK) → τ0

and
Γ T J∆K + T J(ε′

0 \ ε0) ∪ εK, f : (τ , σ, T JF1K, ..., T JFnK) → τ0 ∅` SJ s K : τ

For the first proof obligation, we derive:
Ind. hyp., exchange, and (1)

Γ, x : τ T J∆K + T Jε′
0K, g : T JσK ∅` SJs0K : τ0

Γ, x : τ T J∆K + T Jε′
0 \ ε0K + T Jε0K, g : T JσK ∅` SJs0K : τ0

Γ, x : τ T J∆K + T Jε′
0 \ ε0K, F1 : T JF1K, ..., Fn : T JFnK, g : T JσK ∅` SJs0K : τ0

[Translation]

Γ, x : τ T J∆K + T Jε′
0 \ ε0K, g : T JσK, F1 : T JF1K, ..., Fn : T JFnK ∅` SJs0K : τ0

[Exchange]

Γ T J∆K + T Jε′
0 \ ε0K ∅` {(x, g, F1, ..., Fn)⇒SJs0K} : (τ, σ,T JF1K, ...,T JFnK)→τ0

[Block]

Γ T J∆K + T J(ε′
0 \ ε0) ∪ εK ∅` {(x, g, F1, ..., Fn)⇒SJs0K} : (τ, σ,T JF1K, ...,T JFnK)→τ0

[Weakening]

Here, to apply weakening, we assume the canonical ordering and the definition of the
translation gives us T J(ε′0 \ ε0) ∪ εK = T Jε′0 \ ε0K + T JεK. Further more, to apply the
induction hypothesis we compute T Jε′0 \ ε0K + T Jε0K = T Jε′0K.

For the second proof obligation, we apply the induction hypothesis, weakening, and
(2). J

REFERENCES 41

Syntax of Types:

Value Types τ ::= Int | Bool | ...

Block Types σ ::= (τ , σ) → τ

Value Environment Γ ::= ∅ | Γ, x : τ

Block Environment ∆ ::= ∅ | ∆, f : σ

Label Environment Ξ ::= ∅ | Ξ, l : τ

Type Rules:

Statement Typing
Γ ∆ Ξ ` s : τ

Γ ∆ Ξ ` s0 : τ0 Γ, x : τ0 ∆ Ξ ` s1 : τ1

Γ ∆ Ξ ` val x = s0; s1 : τ1
[Val]

Γ ` e : τ

Γ ∆ Ξ ` e : τ
[Expr]

Γ ∆ Ξ ` b : σ Γ ∆, f : σ Ξ ` s : τ

Γ ∆ Ξ ` def f = b; s : τ
[Def]

Γ ∆ Ξ ` b : (τ , σ) → τ0 Γ ` e : τ Γ ∆ Ξ ` b : σ

Γ ∆ Ξ ` b(e, b) : τ0
[Call]

Γ ∆, F : τ1 → τ0 Ξ ` s : τ

Γ, x : τ1 ∆, k : τ0 → τ Ξ ` s′ : τ

Γ ∆ Ξ ` handle { F ⇒ s } with { (x, k) ⇒ s′ } : τ
[Handle]

Γ ∆ Ξ, l : τ ` s : τ

Γ ∆ Ξ ` #l { s } : τ
[Delimit]

Block Typing
Γ ∆ Ξ ` b : σ

∆(f) = σ

Γ ∆ Ξ ` f : σ
[BlockVar]

Γ, x : τ ∆, f : σ Ξ ` s0 : τ0

Γ ∆ Ξ ` { (x : τ , f : σ) ⇒ s0 } : (τ , σ) → τ0
[Block]

Ξ = Ξ1, l : τ , Ξ2 Γ, x1 : τ1 ∆, k : τ0 → τ Ξ1 ` s : τ

Γ ∆ Ξ ` capl { (x1 : τ1, k : τ0 → τ) ⇒ s } : τ1 → τ0
[Cap]

Expression Typing
Γ ` e : τ

Γ(x) = τ

Γ ` x : τ
[Var] Γ ` n : Int

[Lit]

Figure 9 Type system of System Ξ, label environment Ξ is only needed for proofs and highlighted
in grey.

TR 2020

	1 Introduction
	1.1 Effects as Requirements: The Contextual Reading
	1.2 An example
	1.3 Parametric vs Contextual Effect Polymorphism
	1.4 Lexically Scoped Handlers through Explicit Capability Passing
	1.5 Purity: Traditional vs. Contextual Reading
	1.6 Contextual Reading and Second-Class Functions
	1.7 Overview and Contributions

	2 Programming with Effects and Handlers in Effekt
	2.1 The Fail Effect
	2.2 The Next Effect
	2.3 The Choice Effect
	2.4 Parsing

	3 The Language Effekt
	3.1 Syntax
	3.2 Typing
	3.2.1 Expression Typing
	3.2.2 Statement Typing

	4 The Core Language System
	4.1 Syntax
	4.2 Typing
	4.3 Operational Semantics
	4.3.1 Reduction Rules

	4.4 Soundness

	5 Translation of Effekt to System
	5.1 Well-typedness Preservation
	5.2 Semantic Soundness of Effekt

	6 Practical Evaluation
	6.1 Description of the Implementation
	6.1.1 Generated JavaScript Code
	6.1.2 IDE Support for Effects and Handlers

	6.2 Differences to the Calculus
	6.2.1 Builtin Effects
	6.2.2 Local Mutable State

	6.3 Case Studies
	6.3.1 Lexer: Pull-based Streams
	6.3.2 Parser
	6.3.3 ANF-Transformation
	6.3.4 Pretty-Printer
	6.3.5 Automatic Differentiation

	7 Discussion and Related Work
	7.1 Effect Handlers
	7.1.1 Accidental Capture
	7.1.2 Dynamically Scoped Effects
	7.1.3 Lexically Scoped Effects

	7.2 Second-class Values
	7.2.1 Limitations

	7.3 Coeffects
	7.4 Lightweight Polymorphic Effects

	8 Conclusion
	A Appendix
	A.1 Operational Semantics of System
	A.2 Extended Typing of System
	A.3 Soundness of System
	A.3.1 Preservation
	A.3.2 Semantic Soundness

	A.4 Preservation of Well-typedness

