
111

Effect Handlers for the Masses

JONATHAN IMMANUEL BRACHTHÄUSER, PHILIPP SCHUSTER, and KLAUS OSTER-
MANN, University of Tübingen, Germany

Effect handlers are a program structuring paradigm with rising popularity in the functional programming

language community and can express many advanced control flow abstractions. We present the first imple-

mentation of effect handlers for Java ś an imperative, object oriented programming language. Our framework

consists of three core components: A type selective CPS transformation via JVM bytecode transformation, an

implementation of delimited continuations on top of the bytecode transformation and finally a library for

effect handlers in terms of delimited continuations.

CCS Concepts: · Software and its engineering → Control structures; Source code generation; Run-

time environments; Abstraction, modeling and modularity;

Additional Key Words and Phrases: effect handlers, algebraic effects, delimited continuations, java, jvm,

bytecode transformation

ACM Reference Format:

Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann. 2018. Effect Handlers for the Masses.

Proc. ACM Program. Lang. 2, OOPSLA, Article 111 (November 2018), 27 pages. https://doi.org/10.1145/3276481

1 INTRODUCTION

Algebraic effects [Plotkin and Power 2003] in their extension with effect handlers [Plotkin and
Pretnar 2009] are a program structuring paradigm, splitting programs into three parts: (1) effect
signatures, that declare effect operations like for example yield to output an element of a (push-based)
stream, getHttp to send an (potentially asynchronous) http-request, raise to throw an exception
and so on, (2) effectful functions, that call these effect operations either directly or indirectly via
other effectful functions, (3) effect handlers [Bauer and Pretnar 2013; Plotkin and Pretnar 2009], that
implement the effect operations, specifying what it means for example to yield, send http-requests
or throw exceptions.

Lacking a general mechanism, many control flow abstractions in Java like generators1, asynchro-
nous programming with async/await2, the coroutine programming model3 and fibers (lightweight
user-level threads)4 are currently implemented by custom source-to-source or bytecode transfor-
mations. Since each extension makes different assumptions about the generated code, combining
the different concepts in a single project is non-trivial. As has been shown in the literature, using
effect handlers, many of these control flow abstractions can be expressed as simple libraries [Dolan
et al. 2017, 2015; Leijen 2017b], naturally allowing a combined usage. We will revisit some examples
of control flow abstractions in the context of Java in Section 4.

1https://github.com/peichhorn/lombok-pg/wiki/Yield
2https://github.com/electronicarts/ea-async
3https://github.com/offbynull/coroutines
4http://docs.paralleluniverse.co/quasar

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2018 Copyright held by the owner/author(s).

2475-1421/2018/11-ART111

https://doi.org/10.1145/3276481

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 111. Publication date: November 2018.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3276481
https://github.com/peichhorn/lombok-pg/wiki/Yield
https://github.com/electronicarts/ea-async
https://github.com/offbynull/coroutines
http://docs.paralleluniverse.co/quasar
https://doi.org/10.1145/3276481

111:2 Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann

Many implementations of effect handlers can be found in functional languages. They are either
built into the language, like in Eff [Bauer and Pretnar 2015], Koka [Leijen 2014], Frank [Lindley et al.
2017] and Links [Hillerström et al. 2017], or implemented as a libraries for Haskell [Kammar et al.
2013; Kiselyov et al. 2013; Wu and Schrijvers 2015] or Idris [Brady 2013]. Recently, object-oriented
and imperative languages also started to adopt effect handlers, both as a built-in language construct
for OCAML [Dolan et al. 2017]), as well as as libraries for OCAML [Kammar et al. 2013; Kiselyov
and Sivaramakrishnan 2016], C [Leijen 2017a] and Scala [Brachthäuser and Schuster 2017].

We identify the following important key characteristics of programming languages and libraries
with support for effect handlers:

ś effectful functions mention the effects they use in their type and an effect type system asserts
that all effects are eventually handled;

ś effect handlers can be applied locally, describing a dynamic scope in which effect operations
of a particular effect signature are handled by this very handler;

ś to implement effect operations, handlers gets access to the delimited continuation, that is the
remainder of the program up to the enclosing call to the effect handler.

In this paper, we present a framework for programming with effect handlers in Java called Effekt5.
In our framework, effect signatures are Java interfaces, effect handlers are classes that implement
those interfaces and effectful functions use instances of the effect handlers. Our implementation
consists of three core components: A type selective CPS transformation via JVM bytecode transfor-
mation, an implementation of delimited continuations on top of the bytecode transformation and a
library for effect handlers in terms of delimited continuations.

While all three components are designed in concert to implement the effect handler library, they
can be used and understood individually. The bytecode transformation for example is performed
independent of Java as the source language and could be reused with other JVM languages like
Scala, Kotlin, JRuby, Clojure and others.
In short, our contributions are:

ś The first library design for programming with effect handlers in Java.
ś An implementation of multi-prompt delimited continuations in Java. It uses trampolining
and avoids the typical linear overhead of restoring the stack upon resumption common to all
continuation libraries in Java that we are aware of.

ś A type-selective, signature preserving CPS transformation of JVM bytecode. We use closures
introduced in Java 1.8 to create specialized instances of continuation frames. The general
idea is applicable to any VM-based language that supports closure creation.

ś Examples of how to program with effect handlers in Java.

Source

.class

Target

.class

Stack
Interface

Delimited
Control

Handler
Interface

Effect
Handlers

Effectful
Program

Bytecode Instrumentation User Code

CPS Translation

(Sections 3.1 and 5)

Effect Handlers as a Library

(Section 3)

Using Effect Handlers

(Section 2 and 4)

translates to uses implements uses usesuses

Fig. 1. Structure of the Effekt framework. Directed, solid arrows express dependencies.

5https://github.com/double-blind-review/effekt

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 111. Publication date: November 2018.

https://github.com/double-blind-review/effekt

Effect Handlers for the Masses 111:3

1.1 Overview

The paper structure relates to the structure of our framework which is presented in Figure 1.

User Code. We show how to program with effect handlers in Java using our library. Section 2
presents the library design of Effekt by means of a standard running example of an effectful
program; Section 4 illustrates the expressiveness of Effekt with several more complex examples.

Bytecode Instrumentation. Section 3.1 illustrates the CPS translation by applying it to the running
example and section 5 describes the implementation of the translation in more detail. Section 6.3
evaluates the performance overhead induced by our translation and compares the performance of
Effekt to other continuation libraries in Java.

Delimited Control. Section 3.2 describes the implementation of multi-prompt delimited continua-
tions [Dyvbig et al. 2007] in Java. It interfaces with the instrumented bytecode by implementing the
Stack interface that the instrumented bytecode uses. This means that the bytecode instrumentation
component can potentially be used as a backend for applications other than our implementation of
delimited continuations and that the instrumentation could be exchanged by another backend that
implements the Stack interface.

Effect Handlers as a Library. Subsection 3.3 shows the (to our knowledge) first implementation of
effect handlers as a library for Java. We implement the effect handler library on top of multi-prompt
delimited continuations as defined in interface DelimitedControl . While the implementation
of effect handlers in terms of multi-prompt delimited continuations is not novel [Kiselyov and
Sivaramakrishnan 2016], choosing Java as the target language is and poses new challenges like
integrating effect handlers with mutable state and designing an API that only uses interfaces and
generics for typing. However, it also opens new opportunities like using subtyping and inheritance
for handler reuse. The effect handler library is independent of our concrete implementation of
DelimitedControl and could for instance be reused together with a modified JVM runtime that
directly supports delimited continuations. Section 6.2 discusses design decisions in our effect
handler library and compares the performance of Effekt with existing effect libraries in Scala.

2 PROGRAMMING WITH EFFECT HANDLERS IN EFFEKT

To get a first impression of how to program with effect handlers in Effekt, let’s look at a standard
example from the literature [Kammar et al. 2013] ś a drunk tossing a coin (Figure 2). In the effectful
function drunkFlip in Subfigure 2a we use the effect operation flip to nondeterministically choose
whether the drunk is too drunk to catch the coin in which case we use the effect operation raise to
raise an exception. Otherwise we return the result of a second coin toss as a string. The two effect
operations flip and raise are declared in corresponding effect signatures Amb (for ambiguity)
and Exc (for exceptions) in Subfigure 2b.

The type signature of drunkFlip declares that it may use effects by adding the checked exception
Effects to its throws clause. It may use effect operations from the effect signatures Amb and
Exc because it takes instances of those interfaces as arguments. The drunkFlip method does not
rely on any concrete implementation of the effect operations raise and flip since it merely uses
the interfaces Amb and Exc in its signature. The caller is free to pick implementations of Amb
and Exc , determining the semantics of the effect operations. For example, we could ignore effect
handlers (and our Effekt library) and use real side-effects to implement Amb and Exc directly.
For flip we use a random number generator and for raise we use native exceptions.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 111. Publication date: November 2018.

111:4 Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann

String drunkFlip(Amb amb,Exc exc) throws Effects {

boolean caught = amb.flip();

if (!caught) {

return exc.raise("We dropped the coin.");

} else {

return amb.flip() ? "Heads" : "Tails";

}

}

(a) Effectful function modeling a drunk trying to flip a coin.

interface Exc {

<A> A raise(String msg) throws Effects;

}

interface Amb {

boolean flip() throws Effects;

}

(b) Effect signatures for Exc and Amb .

Fig. 2. Example of using two effects in an effectful function.

To run our example function, we pass instances of NativeExceptions and RandomFlip to
drunkFlip which will randomly result in either a runtime exception or one of the two possi-
ble string values.

class NativeExceptions implements Exc {

<A> A raise(String msg) throws Effects {

throw new RuntimeException(msg);

}

}

class RandomFlip implements Amb {

boolean flip() throws Effects {

return Math.random() > 0.5;

}

}

The interpretations using native side-effects are not the only ones possible. In the remainder of
this section we will explore an interpretation of programs that use Exc into programs that return an
Optional 6. Calling raise will immediately abort the program with Optional.empty () . We will also
explore an interpretation of programs that use flip into programs that return a list by enumerating
and collecting all possible outcomes. Note that these interpretations are not type-preserving: They
change the result type of each function that uses Exc to return an optional and each function that
uses Amb to return a list. This means that, without support for effect handlers, we would have
to change how these results are processed by every caller of an effectful function. What is even
worse, if we use both effects together (as in drunkFlip) we would need to decide and fix upfront
whether raising an exception terminates the search for possible outcomes and thus the function
returns Optional<List<R>>, or whether it only terminates one branch in our search and thus our
function returns List<Optional<R>>. Revising decisions like this in retrospect can be very costly
since they potentially affect the whole codebase. If we want to use functions that use only one
of Exc and Amb together with functions that use both we have to manually łliftž the functions
that use only one of the two effects. Finally, in interpreting the two effect operations together, we
cannot immediately reuse the implementations of the individual effect operations. Effect handlers
address these problems.

6 Optional<A> is an interface for optional values of type A , introduced in Java 1.8

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 111. Publication date: November 2018.

Effect Handlers for the Masses 111:5

2.1 Handling Effects

We now show how to freely mix handlers, if we use effect operations like in Figure 2 and implement
handlers for them by using our Effekt library. This is an example of the modularity benefits
provided by effect handlers. The full implementation of our handlers will be given shortly, for now
it is enough to know that we define our handlers as follows:

class Maybe<R> extends Handler<R,Optional<R>> implements Exc { ... }

class AmbList<R> extends Handler<R, List<R>> implements Amb { ... }

Like our first interpretation of Amb and Exc above, the classes Maybe and AmbList again im-
plement the corresponding effect signatures. The handlers extend our library class Handler<R, E>
to express that they represent effect handlers. In general, every handler for an effect gives semantics
to the corresponding effect operations. It interprets an effectful program which would compute a
result of type R (mnemonic for łreturn typež) into a new semantic domain of type E , the effect
domain. The effect domain is chosen to have enough structure to implement the effect operations.
Before looking at the details of how the handlers are implemented, it is instructive to understand
how they can be used. This is best explained by analogy to exception handling. Effect handlers are a
generalization of exception handlers [Plotkin and Pretnar 2009]: Effect operations generalize throw

to other effects while handling an effect operation is a generalization of try { ... } catch { ... } . In
pseudo syntax, handling effect operations like flip and raise can be thought of as:

try { try { ... flip()...raise("...") ... } catch Exc with Maybe} catch Amb with AmbList

Like with exception handlers in Java, the try-block describes the dynamic scope of the correspond-
ing handler. In comparison, using Effekt, handling effects Amb and Exc looks like:

List<Optional<String>> res1 = handle(new AmbList<Optional<String>>(), amb→

handle(new Maybe<String>(), exc → drunkFlip(amb, exc)));

The lambda, which is passed as body to handle(h, body) represents the dynamic scope in which
the handler h can be used. Besides registering the handler h for the dynamic scope, handle also
passes the handler unmodified as argument to the body. Thus, in our example the variable amb

will be bound to the instance of AmbList created on the same line. Running drunkFlip with both
effects handled now yields for res1 :

▶ [Optional["Heads"],Optional["Tails"],Optional.empty]

We can easily swap the two handlers to obtain a different semantics where an exception leads to a
termination of the backtracking search.

Optional<List<String>> res2 = handle(new Maybe<List<String>>(), exc →

handle(new AmbList<String>(), amb→ drunkFlip(amb, exc)));

Since at least one of the control paths raises an exception, running drunkFlip with the effects
handled in the different order yields for res2 :

▶ Optional.empty

This shows the power of effect handlers: effectful programs can be written fully agnostic of both
the semantic domain into which the effects will be interpreted, as well as the order in which the
effects will be handled.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 111. Publication date: November 2018.

111:6 Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann

2.2 Implementing Effect Handlers

Having seen how effects can be handled, we will now take a closer look at how handlers are
implemented. Subfigure 3b shows the Handler interface which is relevant for implementing ef-
fect handlers. It also shows the type of effectful functions Eff<S, T> which is just like the Java
function interface Function<S, T> but with its single abstract method being marked as throw-
ing Effects . Similarly, interface CPS<A, E> corresponds to the nested effectful function type
Eff<Eff<A, E>, E>.

class Maybe<R> extends Handler<R,Optional<R>>

implements Exc {

Optional<R> pure(R r) {return Optional.of(r); }

<A> A raise(String msg) throws Effects {

return use(k → Optional.empty ());

}

}

class AmbList<R> extends Handler<R, List<R>>

implements Amb {

List<R> pure(R r) {return Lists.singleton(r); }

boolean flip() throws Effects {

return use(k →
Lists.concat (k.resume(true),

k.resume(false)));

}

}

(a) The two effect handlers Maybe and AmbList

utilizing use to capture the continuation.

abstract class Handler<R, E> {

E pure(R r) throws Effects;

<A> A use(CPS<A, E> body) throws Effects {

...

}

static<R, E,H extends Handler<R, E>> E←֓

handle(H h,Eff<H , R> p) throws Effects {

...

}

}

interface Eff<S, T> {

T resume(S value) throws Effects;

}

interface CPS<A, E> {

E apply (Eff<A, E> k) throws Effects;

}

(b) Interface of the library class Handler and the nec-
essary functional interfaces.

Fig. 3. Implementation of effect handlers for Exc and Amb using the library class Handler .

Every handler needs to implement the abstract method pure to specify how handled programs
that don’t use the corresponding effect are lifted from R into the effect domain E . Additionally, a
handler needs to implement all the effect operations which are specified in the effect signature. To
implement the effect operations, the handlers are able to utilize the instance method use provided
by the library class Handler . Calling this.use(body) in the implementation of an effect operation
captures the continuation k and passes it to the provided body. It then continues executing
body (k) , effectively passing control to the handler. This allows the handler to suspend and resume
the handled effectful program.
Both handlers, Maybe and AmbList implement their effect operations in terms of use (Fig-

ure 3a). The handler Maybe , captures the continuation and deliberately discards it in order to
implement the raise effect. This mimics the behavior of native exceptions, where an exception
causes the unwinding (and discarding) of the runtime stack up to the corresponding exception
łhandlerž (hence the terminology). The handler for ambiguity, in turn, captures the continuation
and invokes it twice. Once with true and once with false , each yielding a list of possible re-
sults. Finally, it concatenates the two lists7. It is important to stress that this is only possible
because the continuation captured by use is delimited by the corresponding call to handle . In
the implementation of flip , the continuation captured by use will return a list because it is
delimited by the call to handle(new AmbList<String>(), ...) and the handler AmbList defines

7 For this example, we assume lists to be immutable and only be constructed by singleton and concat .

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 111. Publication date: November 2018.

Effect Handlers for the Masses 111:7

the effect domain to have the type List<String>. In general, the type of the captured contin-
uation is Eff<A, E>. That is, it is an effectful function from A to E . Similarly, in raise it is
safe to discard the continuation and immediately return Optional.empty because the caller of
handle(new Maybe<String,Optional<String>>(), ...) expects a value of type Optional<String>.

2.3 Design of the Effekt Library

We designed Effekt as a library for Java around object oriented idioms like subclassing and
dynamic dispatch. In summary, the Effekt library is based on the following design decisions.
Effect signatures are interfaces and handlers are classes implementing the interfaces. We establish
a handler passing style where users explicitly pass handler instances to functions that use effect
operations. As we discuss in Section 6, this corresponds to a shallow embedding of effect handlers
and is similar to the use of type classes by Kammar et al. [2013] and implicits by Brachthäuser and
Schuster [2017]. Handler implementations capture the continuation by explicitly calling use . In
Effekt, tail resumptive handler implementations which exclusively invoke the continuation in tail
position can be expressed as simple methods that do not capture the continuation. Effekt is a
library and neither changes the language nor the type system. Effectful functions always need to
be marked to throw an Effects exception, since only marked methods are transformed by our CPS
transformation. The exception should never be caught or otherwise suppressed. Handlers and the
operations use and handle are designed to not require an advanced type system. In particular,
they do not require type constructor polymorphism. Effekt does not establish a full static effect
typing discipline. Users need to make sure that an effect handler is only used in the dynamic extent
of a corresponding call to handle . Calling use directly, or indirectly via some effect operation on
a handler outside of the handler scope will result in a runtime error.

3 IMPLEMENTING AN EFFECT HANDLER LIBRARY IN JAVA IN THREE STEPS

As can be seen from our running example, programming with effect handlers in Effekt is almost
just standard Java programming. Only the control operator use and its counterpart handle
make the difference in expressivity. This section describes how these control operators can be
implemented, bottom up. We start with a CPS translation, that rewrites all methods annotated
with throws Effects , build a library for delimited continuations upon the translation and finally
implement effect handlers in terms of delimited continuations.

3.1 Type Selective CPS Transformation by Example

To support accessing the continuation with use , the Effekt framework performs a type selective
CPS transformation by instrumenting (that is, rewriting) JVM bytecode. This can either be achieved
by hooking into the class loading mechanisms of Java and injecting the transformation at runtime
when a class is loaded or by a separate preprocessing phase that rewrites the class files once (łahead
of timež). Implementing the transformation on the level of JVM bytecode opens up the opportunity
of reuse for other JVM languages.
While the implementation of Effekt rewrites JVM bytecode, for easier accessibility of the

paper this section presents the CPS transformation as a semantically equivalent8 source-to-source
rewriting of the example program drunkFlip . This section provides an overview, Section 5 describes
the implementation of the bytecode transformation in more detail and explains howwe treat control
flow and exceptions.

8For the example presented in this section, we manually verified that the bytecode of the source-to-source transformation is

equivalent to the result of the bytecode transformation (modulo some superfluous register stores/loads).

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 111. Publication date: November 2018.

111:8 Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann

String drunkFlip(Amb amb,Exc exc) throws Effects {

boolean caught = amb.flip() ;

if (!caught) {

return exc.raise("We dropped the coin.") ;

} else {

return amb.flip() ? "Heads" : "Tails";

}

}

(a) Source method with highlighted effect calls. The ef-
fect call to exc.raise is a tail call and does not require
an entrypoint.

String drunkFlip(Amb amb,Exc exc) throws Effects {

Effekt.push(() → drunkFlip0 (amb, exc));

return null;

}

(b) Generated method stub, only pushing the initial
entrypoint.

static void drunkFlip0 (Amb amb,Exc exc) {

Effekt.push(() → drunkFlip1 (amb, exc));

amb.flip() ;

}

static void drunkFlip1 (Amb amb,Exc exc) {

boolean caught = Effekt.result ();

if (!caught) {

exc.raise("We dropped the coin.") ;

} else {

Effekt.push(()→ drunkFlip2 (amb,exc,caught));

amb.flip() ;

}

}

static void drunkFlip2 (Amb amb,Exc exc, ←֓

boolean caught) {

boolean res$1 = Effekt.result ();

Effekt.returnWith(res$1 ? "Heads" : "Tails");

}

(c) Entrypoints as separate, static method.

Fig. 4. CPS translation of the example in Figure 4a, presented as a source-to-source transformation.

Figures 4b and 4c show the result of transforming the method drunkFlip . We instrument only
effectful methods and identify those by means of the throws Effects annotation. Using Reynolds
[1972] terminology, we only consider methods marked with throws Effects to be łseriousž. All
other functions are łtrivialž and don’t require any instrumentation. Consequently, we also only
instrument call sites of effectful functions (effect calls). In drunkFlip there are three such effect
calls, two to flip and one to raise . We exclude tail effect calls from the translation, that is effect
calls immediately followed by a return. For drunkFlip this means that we instrument the two flip

calls, since the call to raise is in tail position. We call the code immediately following an effect call
an entrypoint. We also treat the initial entrypoint of a function as an entrypoint in this sense.
Similar to Prokopec and Liu [2018], for each entrypoint in an effectful method, we generate

a separate entrypoint method. For our example, these are the methods drunkFlip0 (the initial
entrypoint method), drunkFlip1 and drunkFlip2 (corresponding to the two invocations of flip).
Entrypoint methods take the function local state as arguments. That is, all local variables and values
on the operand stack needed to resume the function execution after the effect call would return.
Similarly to how the JVM would push a stack frame before a method call, we rewrite every

effect call to first push a continuation frame to a global user-level stack by invoking Effekt.push .
Class Effekt has a global static field Effekt.stack that implements the interface Stack shown
in Figure 5. For notational convenience, we write Effekt.push instead of Effekt.stack.push . The
interface Stack contains all necessary methods used by the instrumented bytecode. A continuation
frame is an instance of the Frame interface, also shown in Figure 5. We use Java 8 lambdas to
create instances of the Frame interface. The lambdas close over the function local state which they
will pass to the entrypoint methods when invoked with enter . Conceptually, we thus represent
continuation frames as instances of classes that have one field for each local they store. After
pushing the continuation frame, the entrypoint methods call the effectful method and immediately
return. Thus, all effect calls in the translated program are tail calls.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 111. Publication date: November 2018.

Effect Handlers for the Masses 111:9

interface Stack {

// special calling convention

void returnWith(Object r);

void unwindWith(Throwable t);

<A> A result () throws Throwable;

// stack of frames

void push(Frame frame);

Frame pop();

boolean isEmpty ();

}

interface Frame {

void enter ();

}

abstract class RTStack implements Stack {

Object res; Throwable exc;

void returnWith(Object r) { res = r ; exc = null; }

void unwindWith(Throwable t) { res = null; exc = t; }

<A> A result () throws Throwable {

if (exc , null) throw exc;

return (A) res;

}

void trampoline() {

while (!isEmpty ())

try {pop().enter (); }

catch (Throwable t) {unwindWith(t); }

}

}

Fig. 5. Interface and example implementation of the user-level stack.

Instrumented effectful functions use a special calling convention: We rewrite all returns to
Effekt.returnWith calls. Correspondingly, entrypoint methods use Effekt.result to obtain the
result of the previous effect call. We transform the original method drunkFlip to a stub (Figure 4b)
that pushes a continuation frame for the initial entrypoint and immediately returns a dummy value.
Callers of drunkFlip have to use Effekt.result to eventually get the actual return value. Instances
of Frame follow the same calling convention for consistency, as we can observe in drunkFlip2 .

The design of the CPS transformation has been guided by the goal to maximize interoperability
with non-effectful functions, such as library functions that do not use effect operations and thus
are not instrumented. At the same time we aimed to support interoperability with other Java
features with as little specialization of the transformation as possible. This includes interfaces,
separate compilation, generics, dynamic method dispatch, subtyping, lambda expressions, visibility
modifiers, nested classes and native exceptions. The most important consequence of these design
goals is that our CPS translation preserves method signatures and thus does only translate terms,
not types or signatures. A standard CPS translation changes the type of a computation that returns
A to a function type (A→ R) → R for some answer type R . However, this change is precluded
by our design decision of not changing method signatures. Instead, the continuation A→ R is
obtained via the global instance of Stack , as we will see in the next subsection. To accommodate
for the change in return type, we make effectful functions use our own custom calling convention.
Instead of using the JVM stack for continuation frames, we use a separate user-level stack. A

canonical implementation of Stack recovering the expected runtime behavior of the JVM stack
is sketched as class RTStack in Figure 5. Only the methods implementing our calling convention
are provided, straightforward stack operations push , pop , and isEmpty are left abstract for
lack of space. Our stack implementation performs trampolining [Ganz et al. 1999]. To run an
instrumented function we first invoke it to push a frame that corresponds to its initial entrypoint
onto Effekt.stack :

static <A> A run(Eff<Void,A> prog) {

prog.resume(null);

Effekt.trampoline();

return Effekt.result ();

}

Effekt.run(() → handle(new AmbList <>(), amb→

handle(new Maybe <>(), exc →

drunkFlip(amb, exc))));

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 111. Publication date: November 2018.

111:10 Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann

To actually start execution, we call Effekt.trampoline which will continue to pop and enter frames
until the stack is empty. If an exception is raised, the trampoline will unwind the user-level stack
frame by frame. Each frame starts with a call to result , reraising the exception after restoring the
method state. Section 5 shows more details on how we deal with exceptions.

3.2 Delimited Continuations

A program that has been transformed with our CPS translation still uses the JVM stack for non-
effectful calls but uses our user-level stack for effectful function calls. Different implementations of
the interface Stack with different representations also give rise to different additional operations
that exploit the corresponding stack representation. In consequence, effectful programs that are
executed against a particular stack implementation can make use of those additional operations. In
this section, we will develop one particular implementation of Stack that implements additional
operations to capture delimited continuations. All code in the rest of this paper is subject to the CPS
bytecode transformation and all methods annotated with throws Effects will be instrumented.
As we will see in subsection 3.3, the effect handler library can be implemented as a very thin

layer on top of multi-prompt delimited continuations [Brachthäuser and Schuster 2017; Kiselyov
and Sivaramakrishnan 2016]. Our implementation of multi-prompt delimited continuations closely
follows Dyvbig et al. [2007], but translated to Java and to our setting of bytecode instrumentation.
We extend the Stack implementation sketched above and implement two additional methods
pushPrompt and withSubcont as summarized by the following interface:

interface DelimitedControl {

<E> E pushPrompt (Prompt<E> p, Eff<Void, E> prog) throws Effects;

<A, E> A withSubcont (Prompt<E> p,CPS<A, E> body) throws Effects;

}

Instances of Prompt<E> (interface defined in Figure 6c) are used to mark positions on the stack.
The type of an effectful function Eff and of effectful programs that use an effectful continuation
CPS have been defined in Figure 3b.9 The type parameter E of Prompt unifies with the type of
the computation that we delimit with pushPrompt . Capturing a continuation with withSubcont ,
the return type of the continuation and of the body have to match the type of the prompt E .

3.2.1 Using Delimited Continuations. Assuming that the global stack instance supports the methods
from DelimitedControl , for any two different prompts p1, p2 : Prompt<Integer>we can implement
examples such as:

2 ∗ Effekt.pushPrompt (p1, () → 1 + Effekt.withSubcont (p1, k → k.resume(2) ∗ k.resume(6)));

▶ 2 ∗ ((1 + 2) ∗ (1 + 6)) = 42

The continuation k corresponds to the evaluation context 1 +□ , since it is delimited by p1 . We
invoke it twice. A second example illustrates prompt search and discarding of the continuation:

2 ∗ Effekt.pushPrompt (p1, () → 1 + Effekt.pushPrompt (p2, () → 3 ∗ Effekt.withSubcont (p1, k → 21)));

▶ 2 ∗ 21 = 42

The captured continuation k contains the program segment marked by prompt p1 . It corresponds
to the evaluation context 1 + pushPrompt (p2, () → 3 ∗□)) .We discard the continuation and replace
it by the value 21 .

9When effectful functions don’t require an argument we will use Eff<Void, A>. To avoid materializing instances of Void

and binding them, we write f .resume() as a short hand for f .resume(null) and (() → ...) instead of (unusedVoid → ...) .

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 111. Publication date: November 2018.

Effect Handlers for the Masses 111:11

class SeqStack extends RTStack {

Seq<Frame> s = Seq.empty ();

void push(Frame frame) { s = s.push(frame); }

Frame pop() { Frame f = s.head (); s = s.tail (); return f ; }

boolean isEmpty () {return s.isEmpty (); }

}

(a) Implementation of Stack , forwarding to an immutable stack.

class DelimCC extends SeqStack implements DelimitedControl {

<E> E pushPrompt (Prompt<E> p,Eff<Void, E> prog)

throws Effects {

s = s.mark(p) ; return prog.resume();

}

<A, E> A withSubcont (Prompt<E> p,CPS<A, E> body)

throws Effects {

Seq<Frame> init = s.before(p); s = s.after (p);

Eff<A, E> k = (A value) → {

s = init.prependTo(s) ; return (E) value; }

return (A) body.apply (k);

}

}

(b) Implementation of delimited control in terms of an immutable,

splittable stack: Seq . Usage of Seq is hiдhliдhted .

interface Prompt<E>{ }

(c) Interface Prompt , used to mark
stack segments. Prompts are com-
pared with reference equality.

interface Seq<A> {

boolean isEmpty ();

A head ();

Seq<A> tail ();

Seq<A> before(Prompt<?> p);

Seq<A> after (Prompt<?> p);

Seq<A> push(A element);

Seq<A> mark(Prompt<?> p);

Seq<A> prependTo(Seq<A> init);

static <A> Seq<A> empty () { ... }

}

(d) Immutable stack that allowsmark-
ing and splitting at positions p .

Fig. 6. Implementation of control operators to capture delimited continuations.

3.2.2 A Splittable Stack Implementation. The simplest implementation of Stack that comes to
mind is to store a list of frames in a field s and implement all abstract operations of Stack by
forwarding to this list s . Figure 6a drafts such an implementation. For now we just assume Seq
to be an immutable implementation of a stack data structure with elements of type A . While
very simple, running a program with this stack implementation already has the benefit that it
performs trampolining and thus reduces JVM stack usage, which might avoid stack overflows.
However, the real power of the translation comes from the fact that Stack implementations can
add new methods which expose additional (control) operators. To implement the additional control
operators pushPrompt and withSubcont we need to mark positions on the runtime stack (mark),
slice the stack at given positions (before , after) and prepend whole stack segments (prependTo)
[Dyvbig et al. 2007]. The stack data structure Seq (Figure 6d) that we have already used above
offers exactly these operations. One can think of Seq<A> as a two-sorted stack that contains
elements of type A and markers of type Prompt . Calling s.before(p) returns the initial segment
up to, but not including the first occurrence of the marker p . This segment contains all the recently
pushed elements after p has been pushed. Calling s.after (p) returns the remainder of the stack.
This segment contains all the elements which have been pushed before the marker p has been
pushed. This is characterized by the following equation:

s.before(p).prependTo(s.after (p).mark(p)) ≡ s where p < s.before(p)

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 111. Publication date: November 2018.

111:12 Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann

3.2.3 Pushing a Prompt. Figure 6b shows the implementation of the DelimitedControl interface,
using Seq . To implement pushPrompt , we mark the stack using the provided prompt p and
update the mutable reference s with the now marked stack. We then resume with the effectful
program prog . Being effectful, the program prog pushes additional frames onto the stack. We can
capture those frames later by slicing the stack at the position of the installed marker p .

3.2.4 Capturing a Continuation. The control operator withSubcont (p, body) captures the con-
tinuation k up to the next dynamically enclosing pushPrompt (p, ...) and conceptually replaces
the call to pushPrompt with a call to body.apply (k) . Its implementation in Figure 6b stores all
frames that have been pushed after p in a local variable init . This segment corresponds to the
delimited continuation from type A to type E . That is, the top most frame expects Effekt.result
to return a value of type A . The initial segment and the prompt marker are then removed from
the stack by mutating it with s = s.after (p) . This leaves a segment on the stack which expects a
value of type E to continue program execution. The continuation k implements the functional
interface Eff with method resume() throws Effects . It closes over the initial stack segment init

and, when invoked, prepends it to the stack s . This implements the desired semantics of resuming
the delimited continuation: The runtime system will first run the initial stack segment init before
it eventually continues at the callsite of resume within body .

There are two casts involved, that require some explanation. Both withSubcont and the continu-
ation k are effectful. Thus the respective caller will be instrumented. However, by mutating field s

and modifying the stack, we change the execution context. In withSubcont we remove the initial
segment of the stack and thus the new caller expects a value of type E not A . In the continuation
we prepend the initial segment and thus the caller now expects an A not E . The Java typechecker
is ignorant of our transformation and the modifications to our own callstack. Hence the casts10.

3.3 Implementation of the Effekt Library

In the previous subsections we have seen how programs which contain throws Effects annotations
are CPS translated. We extended the runtime environment in which those translated programs are
executed to support multi-prompt delimited continuations. Equipped with multi-prompt delimited
continuations we are now finally ready to see how the effect handler library can be implemented.

The expressive power of effect handlers comes from the two operations handle and use which
are encapsulated in the library class Handler . Figure 7 shows the implementation of these two
operations in terms of delimited continuations. We use handlers themselves as prompt markers.
An effect handler with effect domain E implements Prompt<E>. The answer type of delimited
continuations thus will be the effect domain E . In the implementation of handle we push the
handler as a prompt before resuming with prog . The pushed handler will delimit the extent of
continuations captured by that handler. By calling h.pure after resuming, programs that don’t use
effects will be lifted from R to E . The method use calls withSubcont with the current handler
instance this as a prompt marker to capture the continuation up to the most recent call to handle
on this handler instance. It then passes the captured continuation k to body .
Effect handlers in Effekt are deep handlers [Kammar et al. 2013]. That is, all effect opera-

tions are recursively handled by the same handler. To implement deep handlers, we modify the
continuation to re-push the prompt before resuming to make sure that all subsequent calls to
use on this handler are again delimited by this . That is, both continuations k1 and k2 in
handle(h, () → 1 + h.use(k1 → ...) + h.use(k2 → ...)) should be delimited by handle(h, () → □) .
Our operations handle and use are thus conceptually very similar to spawn and the corresponding
controller by Hieb and Dybvig [1990].

10Since A and E are generic type parameters, they will nevertheless be erased and the program can safely be executed.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 111. Publication date: November 2018.

Effect Handlers for the Masses 111:13

abstract class Handler<R, E> implements Prompt<E> {

E pure(R r) throws Effects;

<A> A use(CPS<A, E> body) throws Effects {

return Effekt.withSubcont (this, k → body.apply (a→ Effekt.pushPrompt (this, () → k.resume(a))));

}

static <R, E,H extends Handler<R, E>> E handle(H h,Eff<H , R> prog) throws Effects {

return Effekt.pushPrompt (h,() → h.pure(prog.resume(h)));

}

}

Fig. 7. The essence of the effect handler library: The Handler class.

4 USE CASES

Having implemented effect handlers as a library for Java, programmers can now freely combine
object oriented Java programming with effect handlers. We show some use cases that demonstrate
this newly gained expressiveness of combining effect handlers with OOP. At the same time we
show more of our programming model and how it interacts with OO features such as interfaces,
inheritance, etc.

4.1 Handling Multiple Effects in one Handler

All handlers we have seen so far only implemented a single effect signature. However, sometimes
it is necessary to group the implementation of multiple effect signatures in a single handler. Since
effect signatures are interfaces and handlers are classes implementing those interfaces, this is
straightforward. Effect implementations grouped in a single handler share the same effect domain
E , share the private state of the handler and they can be implemented in terms of each other.
In particular, sharing the effect domain is important if the handler wants to express interaction
between different effect operations. Two examples combining Amb and Exc in one handler to
share the effect domain are:

class Nondet<R> extends AmbList<R> ←֓

implements Exc {

<A> A raise(String msg) throws Effects {

return use(k → Lists.empty ());

}

}

class Backtrack<R> extends Maybe<R> ←֓

implements Amb {

boolean flip() throws Effects {

return use(k → {

Optional<R> res = k.resume(true);

return res.isPresent () ? res : k.resume(false); });

}

}

Handler Nondet extends AmbList and only provides the definition for raise . It shares the effect
domain List<R>with AmbList . Similarly, handler Backtrack extends Maybe and adds the im-
plementation for flip . It shares the effect domain Optional<R>with Maybe . By subtyping, the
combined handlers can of course still be used as handlers for the individual effects Amb or Exc :

handle(new Nondet, nd → drunkFlip(nd, nd))

▶ ["Heads", "Tails"]

handle(new Backtrack, bt → drunkFlip(bt, bt))

▶ Optional["Heads"]

This also illustrates reuse of handler implementations by inheritance. We only needed to provide
the missing definitions, all other implementations of effect operations are inherited.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 111. Publication date: November 2018.

111:14 Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann

4.2 Alternatives to Handler Passing

In previous examples, effectful functions expressed their use of effects by expecting handler instances
as arguments, whichwe refer to as handler passing style. In an object oriented programming language
like Java, it is natural to explore other means to get access to a handler instance.
Handlers can be passed to constructors and stored in fields. Take the following implementation of
a reader effect (specialized to characters) as an example:

class StringReader<R> extends Handler<R, R> implements Reader {

final Exc exc; final String input; int pos = 0;

StringReader(String s, Exc e) { this.input = s; this.exc = e; }

public char read () throws Effects {

return if (pos ⩾ input.length()) exc.raise("EOS") ;

else input.charAt (pos ++);

}

}

interface Reader {

char read () throws Effects;

}

The handler StringReader uses an instance of an Exc -handler to raise the end-of-stream exception.
This instance is passed on construction and stored in the field exc . The methods of StringReader
which use the Exc effect can only be safely executed in the corresponding dynamic scope of the
Exc -handler, which is up to the user of StringReader to ensure.
Under the assumption that the whole program runs in the dynamic scope of one global Exc handler,
we could also store this handler instance in a global static field. This has the disadvantage that
neither the method signature nor the constructor indicate the use of the Exc effect.
Dependencies on other effect operations can also be expressed by declaring them as abstract
methods or abstractly implementing corresponding effect signatures.

4.3 Ambient State and Parametrized Handlers

Our bytecode instrumentation only saves and restores function local state, but does not deep-
copy heap allocated state, like fields. Nothing prevents the user from using mutable state in the
implementation of handlers. The handler StringReader is an example since it mutates the field
pos . However, mutable state and delimited continuations can interact in unforeseen ways. For
instance, we could use both Amb and Reader in a program p and run the program with:

handle(new AmbList <>(), amb→ handle(new StringReader <>(), rd → p(amb, rd)));

As we recall, the AmbList handler resumes a captured continuation twice. Now the first resumption
can potentially affect the result of the second resumption by mutation of the field pos in the handler
StringReader . Instead, for the second resumption we want to reset all handlers that are part of
the captured continuation to the state prior to the first resumption. This notion of handler state is
referred to as ambient state [Leijen 2017b]. In Effekt we support ambient state as follows: Handler
implementations can just use mutable state, like StringReader . To turn the handler state into
ambient state a handler just needs to implement the Stateful<S> interface below.

class StringReader2<R> extends StringReader<R> ←֓

implements Stateful<Integer> {

Integer exportState() {return pos; }

void importState(Integer state) {pos = state; }

}

interface Stateful<S> {

S exportState();

void importState(S state);

}

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 111. Publication date: November 2018.

Effect Handlers for the Masses 111:15

Our implementation of delimited control is extended to save the handler state on capture of the
continuation and restore it on resumption. This implements ambiently scoped state.

4.4 Case Study: Parsing

Equipped with nondeterministic choice, exceptions and reader we can implement parsers [Leijen
2016]. For convenience, we group Amb , Exc , and Reader into one effect signature for parsers.
As can be seen from the example, flip models alternatives in a grammar.

interface Parser extends Amb,Exc,Reader { }

int digit (Parser p) throws Effects {

char t = p.read ();

return isDigit (t) ? getNumericValue(t)

: p.raise("...");

}

int number (Parser p) throws Effects {

int res = digit (p);

while (true)

if (p.flip()) { res = res ∗ 10 + digit (p); }

else {return res; }

}

We parse the string "123" with the number parser, handling effects with a ForwardingParser
that stores effect handlers for Amb , Exc in Reader in fields and implements the corresponding
effect operations by forwarding. We can handle effect operations flip and raise with either the
Nondet handler to get a list of all possible parses or with the Backtrack handler to get just the
first successful parse if it exists.

handle(new Nondet <>(), nd →

handle(new StringReader2 <>("123", nd), r →

number (new ForwardingParser(nd, nd, r))));

▶ ["123", "12", "1"]

handle(new Backtrack <>(), bt →

handle(new StringReader2 <>("123", bt), r →

number (new ForwardingParser(bt, bt, r))));

▶ Optional["123"]

By using effect operations, the parsers can be written in direct style. At the same time handlers
(like AmbList or Nondet) can transparently access the continuation in the implementation of
effect operations. Similarly, an alternative handler implementation of Reader could access the
continuation and convert the parser implementation from pull to push. This way, alternative parsing
strategies such as breadth first parsing and online parsing can be implemented without needing to
change concrete parsers, like number .

4.5 Case Study: Generators and Coroutines

In the programming language Python, the built-in control operation yield can be used to describe
a stream of values also known as generators [Politz et al. 2013]. While generators are built-in into
Python, with effect handlers we can implement them as a library [Leijen 2016].

void numbers(int to,Writer<Integer> w) throws Effects {

int n = 0;

while (n ⩽ to) {w.write(n ++); }

}

class Iterate<A, R> extends Handler<R, IteratorEff<A>>

implements Writer<A> { ... }

interface Writer<A> {

void write(A value) throws Effects;

}

interface IteratorEff<A> {

boolean hasNext () throws Effects;

A next () throws Effects;

}

The method numbers describes a generator that yields integers up to a given value using the
Writer effect. We can handle the writer effect with the Iterate handler, which captures and stores
the continuation on every write to suspend the generator until the next value is requested.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 111. Publication date: November 2018.

111:16 Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann

IteratorEff<Integer> it = handle(new Iterate()<>,writer → numbers(10,writer));

while (it.hasNext ()) {println(it.next ()); }

Since the iterator is effectful, we cannot reuse the Java interface Iterator . The interface IteratorEff
duplicates the interface much like we introduced Eff as effectful alternative to Function .

The programming model of coroutines [Conway 1963; Prokopec and Liu 2018] is in essence very
similar to generators. Coroutines can suspend themselves by yielding values to the coroutine caller,
similar to how the Writer effect allows to send values from the generator to the program that uses
it. We can easily generalize the Writer effect to allow bidirectional communication to allow the
coroutine caller to send values to the coroutine on resumption.

interface Yield<A,B> {

B yield (A value) throws Effects;

}

int coroutine1 (Yield<Integer,Boolean> y) throws Effects {

int n = 0; while (y.yield (n)) n ++; return n;

}

interface Coroutine<A,B, R>{

void resume(B value) throws Effects;

boolean isDone();

A value();

R result ();

}

In our model, coroutines like coroutine1 are effectful programs using the Yield effect.

Coroutine<Integer,Boolean, Integer> c = Coroutine.call (this :: coroutine1);

System.out.println(co.value()); // 0

co.resume(true);

System.out.println(co.value()); // 1

co.resume(false);

System.out.println(co.result ()); // 1

In the above example, the coroutine coroutine1 suspends execution after yielding an integer,
awaiting a boolean from the coroutine caller to indicate whether further values should be produced.
The coroutine instance is created by handling the yield effect with a handler that captures and
stores the continuation upon yield , similar to how the Iterate handler handles the write effect
operation.

class RoundRobin extends Handler implements Coop {

Queue<Eff<Void,Void>> ps

void fork(Eff<Void,Void> p) throws Effects {

if (flip()) {p.resume(); use(k → null); }

}

void yield () throws Effects {use(k → ps.add (k)); }

boolean flip() throws Effects {

return use(k → {ps.add (() → k.resume(true));

return k.resume(false); });

}

void run() throws Effects {

while (!ps.isEmpty ()) ps.remove().resume();

}

}

interface Coop {

void fork(Eff<Void,Void> p) throws Effects;

void yield () throws Effects;

}

// program using cooperative multitasking

RoundRobin scheduler = new RoundRobin()

handle(scheduler, s→ {
s.fork(() → {

println("world");

});

println("hello");

s.yield ();

});

scheduler .run();

Fig. 8. Effect signature Coop with operations for cooperative multitasking and a round-robin scheduler
implemented as handler RoundRobin .

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 111. Publication date: November 2018.

Effect Handlers for the Masses 111:17

4.6 Case Study: Cooperative Multitasking

Like generators and coroutines, cooperative multitasking and async/await can be implemented
as a library [Dolan et al. 2017; Leijen 2017b]. Programs can use the Coop effect to fork and
suspend processes. A process is an effectful program Eff<Void,Void>. The RoundRobin handler11

in Figure 8 implements a scheduler that keeps a queue of all running processes in its handler state.
Forking a process p is implemented by using flip to get a boolean and then either starting p and
discarding the continuation when p returns or continuing as normal otherwise.

Yielding is implemented by enqueueing the continuation of the process and immediately return-
ing. The handler will then pick the next process to execute. A program that uses Coop is executed
by first handling the effect using RoundRobin and then running the scheduler with run .

5 IMPLEMENTATION OF THE TYPE SELECTIVE CPS TRANSFORMATION

Section 3.1 illustrated the type-selective CPS translation by example as a source-to-source trans-
formation. This section presents the implementation of the translation on the level of bytecode
and shows how we handle control flow elements like jumps and exceptions. The translation is
interesting in that it uses Java 8 closures to create continuations. This is in contrast to other bytecode
translations which we will compare in Section 6.1.
We implemented the transformation described in this section using the OPAL framework12 by

Eichberg andHermann [2014] for static analysis and synthesis of JVM bytecode. Our implementation
of the CPS transformation as well as all other components of Effekt can be found online13.
We minimize the presentation to a relevant core set of language features, leaving out details

that distract from the essence of the transformation: Storing all necessary function local state in
closures and inserting calls to the Effekt API as described in Section 3. We model the JVM and thus
assume an abstract machine with registers (also referred to as locals, since they are function local),
an operand stack (also referred to as operands, again function local) and a frame stack (commonly
referred to as stack). We use the term function local state to refer to the values stored in locals and
operands at a given time in the execution of a method. We also assume the JVM calling convention
that function arguments are pushed on the operand stack by the caller, but accessible as locals by
the callee, starting from register index 0 . We assume every bytecode instruction is labeled, but
omit labels that we never refer to.
We explain the transformation on an effectful example method doLoop :

boolean doLoop () throws Effects {

Reader r = Readers.getReader (); // static method

loop : try {while (’\n’ , r .read ()) { } }

catch (MyExc e) {return false; }

exit : return true;

}

The bytecode of the method doLoop is shown in Figure 9a. The method doLoop will perform effect
calls to r .read () until the result is either a newline or r .read () raises a native exception. The
example includes exception handling to illustrate in more detail how the bytecode instrumentation
interacts with native exceptions. As in the JVM, exception-handling is modeled external to the list
of bytecode instructions of a method and exception handlers are given in the form of regions as

excregion tryStartLabel tryEndLabel catchLabel exception

11The type parameters of Handler are Void , they are omitted due to lack of space. pure just returns null .
12http://www.opal-project.de/
13http://github.com/b-studios/jvm-effekt

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 111. Publication date: November 2018.

http://www.opal-project.de/
http://github.com/b-studios/jvm-effekt

111:18 Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann

In our example, let us assume an exception region excregion loop break catch MyExc is in place.
That is, if an exception of type MyExc is raised in the dynamic region between loop and break

execution will be continued at catch .

method doLoop 1 throws Effects {

invoke Readers.getReader 0

store 1

loop : const ’\n’

load 1 // load Reader from local 1

op : invoke Reader.read 1

ifeq exit

break : goto loop

catch : const false

return

exit : const true

return

}

excregion loop break catch MyExc

(a) Bytecode of method doLoop .

SJdoLoopK = method doLoop 1 throws Effects {

load 0 // load reference to ’this’

closure Frame.enter doLoopinit 1

const false // load dummy value

return

}

EJdoLoopKinit = method doLoopinit 1 {

goto entryinit
...

}

EJdoLoopKop = method doLoopop 2 {

goto entryop

...

}

(b) Generated methods ś method bodies in Fig. 9d.

effCallsdoLoop = [init, op] operandsinit = 0 operandsop = 1 tmpLocaldoLoop = 2 localsinit = [0] localsop = [1]

(c) Meta information as obtained by static analysis.

entryinit : invoke Readers.getReader 0

store 1

loop : const ’\n’

load 1

op : store 2 // save call operands

load 1 // load live locals

closure Frame.enter doLoopop 2 // close over two values

invoke Effekt.push 1 // push closure to stack

load 2 // restore call operands

invoke Reader.read 1

returnvoid

←֓

entryop : load 0 // load arguments

load 1

store 1 // restore locals

invoke Effekt.result 0 // get result

ifeq exit

break : goto loop

catch : const false

invoke Effekt.returnWith 1 // store result

returnvoid

exit : const true

invoke Effekt.returnWith 1 // store result

returnvoid

(d) Result of translating the instructions of method doLoop .

Fig. 9. Example of translating a method doLoop .

The syntax of the term-language is summarized in Figure 10a. For simplicity of the presentation,
we do not concern ourselves with types and thus choose a uni-typed term-language. The translation
does not distinguish instance methods and static methods. Hence, we only include a single method
definition that consists of a name, a list of exception handler regions (the exception table), a list of
potentially raised exceptions and a list of labeled instructions. The syntax of bytecode instructions
Instr in Figure 10a includes instructions to load constant values (const v) to the operand stack,
instructions to load from and store into function local registers (load index , store index) and
control flow instructions (return , throw , ifeq 14 and goto). Finally, as with method declarations,

14For our example, we assume ifeq label pops two values and jumps to the given label if the two values are equal.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 111. Publication date: November 2018.

Effect Handlers for the Masses 111:19

we only include a single form of method invocation invoke name arity that subsumes static and
virtual method calls. Virtual method calls take the receiver as the first argument and thus always
have an arity greater than or equal to one.

instr ∈ Instr ::= const Value | load N | store N

| return | throw

| goto L | ifeq L

| invoke Name N

| closure Name Name N

m ∈ Method ::=method Name N throws Name {L : Instr }

label ∈ L

name ∈ Name

(a) Syntax of methods and bytecode instructions.

(T-Stub) SJ·K : Method → Method

SJ method name arity throws exc { instr }K =

method name arity throws exc {

saveState (init)

loadDummyResult

return

}

(T-Entrypoint) EJ·Keff : Method L→ Method

EJ method name arity throws exc { instr }Keff =

method nameeff closureArityeff throws ∅ {

goto entryeff

IJinstrK

}

(b) Transformation of effectful methods

(T-Invoke-Eff) IJ·K : (L : Instr) → L : Instr

IJ eff : invoke fun arityK if effectful (fun) =

eff : saveCallOperands (tmpLocal
m
, arity)

saveState (eff)

restoreCallOperands (tmpLocal
m
, arity)

invoke fun arity

returnvoid

entryeff : restoreState (eff)

invoke Effekt.result 0

(T-Return)

IJ label : returnK =

label : invoke Effekt.returnWith 1

returnvoid

(T-Other)

IJ label : instrK = label : instr

(c) Transformation of bytecode instructions

saveCallOperands : N × N→ L : Instr

saveCallOperands (first, n) =

storeLocals (first to (first + n − 1))

restoreCallOperands : N × N→ L : Instr

restoreCallOperands (first, n) =

loadLocals ((first + n − 1) downTo first)

saveState : E→ L : Instr

saveState (eff) =

loadLocals (localseff)

closure Frame.enter nameeff closureArityeff

invoke Effekt.push 1

restoreState : E→ L : Instr

restoreState (eff) =

loadLocals (0 to (closureArityeff − 1))

storeLocals (reverse (localseff))

(d) Helper functions

Fig. 10. Type selective CPS translation via bytecode transformation.

5.1 Translation of Methods

Only effectful methods that are marked as throwing Effects exceptions are translated, all other
methods of a class are copied unchanged.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 111. Publication date: November 2018.

111:20 Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann

As was seen in the source-to-source transformation in Figure 4, for one effectful method m ,
we generate multiple methods: a single method stub, using the translation function SJ·K and one
entrypoint method for each effect call at label eff using the translation function EJ·Keff (both
translation functions are defined in Figure 10b). Every effect call eff : invoke fun arity inside a
given method m gives rise to an entrypoint uniquely identified by the label eff . The entrypoint
itself is labeled entryeff and represents the continuation of the method m after the effect call
returned. For consistency, we also treat the initial entrypoint at label init as effect call. The
special entrypoint entryinit refers to the label of the first original instruction of the method. By
explicitly pushing the initial entrypoint, we perform trampolining for each effect call. For the
method doLoop , we thus generate three methods: the method stub doLoop and the two entrypoint
methods doLoopinit and doLoopop (Figure 9b).
Rule T-Stub generates the method stub that first saves the local state and then immediately

returns a dummy value. At that point, the local state only consists of the arguments supplied to
the function call. As we will see shortly, saveState thus pushes a closure that closes over the call
arguments and resumes with method doLoopinit when invoked. The returned result of the stub
method will never be used, hence loadDummyResult can load any constant value.
Rule T-Entrypoint generates two static entrypoint methods doLoopinit and doLoopop . The

bodies of the two methods are exactly the same after the initial goto instruction and are given in
Figure 9d. The only difference is the initial jump. Since generating almost identical methods for
each entrypoint leads to unnecessary growth of the class file, in our implementation of Effekt, we
perform dead code elimination after generating the bytecode. Using closures to save state, only
saving live variables and performing dead code elimination ultimately results in code which is very
close to handwritten code in continuation passing style (as in Figure 4c).

5.2 Saving Function Local State

To generate state saving and restoring code, we use the following information about a method m ,
which we obtain by static analysis:

ś the set of all labels corresponding to effect calls, also including the first label entryinit but no
effect tail calls ś effCalls (m) ∈ L ,

ś the index of the first free local register, not used by the original instructions of method m ś
tmpLocal

m
∈ N .

Likewise, for each effect call eff in a method m , the transformation uses the following information
which we again obtain by static analysis:

ś the number of operands on the operand stack after the effect call (not including the result of
the effect call) ś operandseff ∈ N ,

ś the list of indices of local registers which are alive after the effect call ś localseff ∈ N ,

For method doLoop , the static information is given in Figure 9c. We also define closureArityeff to
equal operandseff + | localseff | , referring to the total number of values that need to be stored in
the closure, that is all operands and the number of locals which are live after the effect call. To
actually save the state, the meta function saveState generates code that stores those parts of the
function local state which are necessary to resume the execution of the function. This includes
all operands (after the effect call) and the contents of all registers which correspond to live local
variables. This is achieved in three steps:

(1) all live local variables are loaded to the operand stack; the operands do not need to be loaded
since they already are on the operand stack

(2) a new instance of a Frame is created as a lambda using the given method nameeff as the
body of the lambda and closing over closureArityeff -many values on the operand stack;

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 111. Publication date: November 2018.

Effect Handlers for the Masses 111:21

(3) finally, the newly created frame is pushed using Effekt.push .

In JVM bytecode, closures are created by issuing a specific invokedynamic call to a lambda
metafactory. We refer to this call only in its specialized form as

closure interfaceName name arity

The call to closure is provided with a name ∈ Name of a method which serves as the implemen-
tation of the lambda, implementing a single-abstract-method interface interfaceName ∈ Name 15

and an arity ∈ N which specifies the number of values the lambda should close over. The JVM
runtime passes the closed-over values as additional arguments to the implementing method when
the closure is applied.

5.3 Translation of Instructions

To generate the bodies of entrypoint methods, Figure 10c defines the semantic function IJ·K which
specifies how labeled instructions are translated. The result of translating the body of doLoop

can be found in Figure 9d. Figure 10d gives the implementation of some of the helper functions.
They are meta functions and thus expand at translation time to generated code. Given a list of
register indices, the unlisted functions loadLocals and storeLocals generate bytecode that loads
from (respectively stores to) all given locals. We use the notation x to y to denote a range of
indexes from x to y , both ends inclusive. Similarly, x downTo y denotes a decreasing range.
The translation of bytecode instructions behaves as identity (Rule T-Other) except for effect

calls (Rule T-Invoke-Eff) and returns (Rule T-Return). To stress, non-effectful calls don’t require
any modification. To translate effect calls, rule T-Invoke-Eff saves the function local state, performs
the effect call and then suspends the method by returning to the trampoline (returnvoid). In the
translated program, all jumps to the effect call within m should point to the instrumented call
instead. Therefore we change the label eff to point to the first instruction of the state saving code.
This automatically also affects exception regions that mention eff . As in our doLoop example, the
effect call might require arguments that reside on the operand stack at the time of state-saving. To
account for this, we use temporary locals (which will not be stored in the closure) to set the call
operands temporarily aside.

The remainder of the function after the effect call is labeled with entryeff . Since it immediately
follows a return, this part of the code is only reachable by the goto entryeff in the corresponding
entrypoint method. At that time, all function state necessary for resumption has been passed as
arguments and is thus stored in first closureArityeff -many registers. For our example of doLoop ,
the code at label entryop assumes that one operand (the constant ’\n’) and one local (an instance
of type Reader) have been passed as arguments and are thus available via registers 0 and 1. Before
the function can be resumed, its state needs to be reset to where it has been left off. The meta
function restoreState loads all saved operands and locals (in this order) to the operand stack. It
then writes the locals to the correct registers (in reverse order). The result of the previous effect call
is obtained by Effekt.result . If the previous effect call exited abnormally by throwing an exception,
Effekt.result as implemented in Figure 5, will re-raise this exception. Since we already restored
all operands and locals, the exception will be raised in the correct context and trigger the correct
exception handlers. Being defined in terms of labels, our translation does not need to modify the
exception table. The rule T-Return replaces every return with a call to Effekt.returnWith to install
the second half of the special calling convention.

15For the translation, interfaceName will always be Frame.enter

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 111. Publication date: November 2018.

111:22 Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann

6 DISCUSSION AND RELATED WORK

We discuss design decisions, related work, performance and future work. Existing implementations
of libraries and languages for (algebraic) effect handlers are either translations to a high level
language or involve a custom runtime implementation. High level implementations translate
effect handlers into delimited continuations [Brachthäuser and Schuster 2017; Kammar et al. 2013;
Kiselyov and Sivaramakrishnan 2016], free monads [Kiselyov and Ishii 2015] or perform a source
to source CPS translation into another high-level language [Hillerström et al. 2017; Leijen 2017c].
Other implementations require a custom runtime that supports stack manipulation [Bauer and
Pretnar 2015; Dolan et al. 2017] or setjump / longjump [Leijen 2017a]. In this paper, we explore a
new implementation technique for effect handlers in terms of a CPS transformation of bytecode.
The discussion is split accordingly into a discussion of the bytecode transformation and a discussion
of the Effekt framework for programming with effect handlers as a whole.

6.1 Continuations on the Java Virtual Machine

We review related work on (delimited) continuations and CPS transformations in the context of
the Java virtual machine. While implementations that modify the JVM exist [Dragos et al. 2007;
Stadler et al. 2009] or are under development [Pressler 2017]. While those specialized runtimes
could potentially be used as backend for our effect handler library, here we will focus on library
solutions. We compare our CPS transformation with three other Java projects that perform bytecode
instrumentation. A library for fibers łQuasarž16, a library for one-shot continuations łJavaFlowž17

and a library for coroutines18.

Continuation instantiation. Approaches to capture the continuation can be characterized by the
point in time the continuation is constructed. CPS transformations create the continuation before

the execution of an effectful call. The continuation is thus always immediately available. This is
how we implemented Effekt. It is also the case for implementations of effect handlers that rely
on CPS [Hillerström et al. 2017] and corresponding monadic implementations in eager languages
like Scala Effekt [Brachthäuser and Schuster 2017]. Quasar also explicitly stores all function state
before entering an effect call. Another approach is to instantiate the continuation only when it
is needed. Typically, to signal that the continuation needs to be captured, the effectful function
can use a special exception [Loitsch 2007; Pettyjohn et al. 2005; Sekiguchi et al. 2001], sum types
[Kiselyov and Sivaramakrishnan 2016] or global flags (JavaFlow, Coroutines).

Stack Restoration. Some implementations are designed to fully restore JVM stack when a con-
tinuation is resumed (Quasar, JavaFlow). This simplifies integration with exceptions, stack traces
and debuggers. Full restoration of the stack is a technical consequence of not having a first class
representation of continuation frames. In consequence, all bytecode continuation libraries in Java
that we are aware of resume a continuation by replaying all function calls. However, restoring
the stack is always linear in the depth of the stack since all function calls need to be replayed.19

In contrast to that, in Effekt we explicitly reify each continuation frame as a closure and upon
resumption we enter the first frame without restoring the Java stack. While this helps to reduce
the asymptotic complexity from quadratic to linear, stack traces in Effekt only show very few
frames which can impede debugging.

16http://docs.paralleluniverse.co/quasar
17http://commons.apache.org/sandbox/commons-javaflow/
18https://github.com/offbynull/coroutines
19For Quasar, this observation has also been made by Aleksandar Prokopec (Oracle Labs) ś private communication.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 111. Publication date: November 2018.

http://docs.paralleluniverse.co/quasar
http://commons.apache.org/sandbox/commons-javaflow/
https://github.com/offbynull/coroutines

Effect Handlers for the Masses 111:23

Function state representation. The state necessary to resume a suspended function consists of the
function local state and an entrypoint label. It can be represented and stored in different ways. The
entrypoint label can be encoded as a number that will be dispatched upon with a switch statement
at the beginning of the method. This is commonly combined with storage of the function local data
in a stack like data structure (Quasar, JavaFlow, Sekiguchi et al. [2001], Bierman et al. [2012]). An
alternative is to replace the switch by dynamic dispatch and to store the function data in a closure
[Pettyjohn et al. 2005]. This is how Effekt is implemented.

Multiple resumptions. We designed Effekt in a way that continuations can naturally be resumed
multiple times. In implementations supporting only one-shot continuations, state update can be
destructive, which makes it easier to implement continuations efficiently [Dolan et al. 2015]. While
Effekt maintains one global immutable runtime stack (as in Figure Figure 5), Quasar and JavaFlow
maintain onemutable stack per delimited continuation / fiber. In such a setting, multiple resumptions
are implemented by deeply cloning the corresponding stack and all nested stacks before resuming.
In Effekt function local state is copied into immutable frames. Also stack segments are immutable
and can be shared across multiple resumptions.

6.2 Relation to other (Algebraic) Effect Handler Libraries and Languages

Most implementations of libraries and languages for (algebraic) effects are based on a deep embedding

of effect operations. They reify effect operations as alternatives in a sum type. For instance, the flip

effect operation would be reified as a constructor of an algebraic data type Amb . Handlers then
use pattern matching to interpret the reified effect operations [Bauer and Pretnar 2015; Hillerström
et al. 2017; Kiselyov and Ishii 2015; Kiselyov and Sivaramakrishnan 2016; Leijen 2014]. To mix
programs with different effects means to extend an open union type of reified effect operations.
In contrast, Effekt builds on a shallow embedding [Carette et al. 2007; Hudak 1998] of effect

operations. Shallow embeddings can be structured in a pleasingly extensible way [Oliveira and
Cook 2012]. Interpretation of effect operations is moved from (external) pattern matching to
(internal) dynamic dispatch which makes a shallow embedding of effect operations a good fit for
object oriented programming languages. Kammar et al. [2013] base their library implementation
of algebraic effect handlers on Haskell type classes, effectively performing a shallow embedding.
Using type classes helps Kammar et al. to achieve good performance results since it prevents the
materialization of constructors for effect operations. Brachthäuser and Schuster [2017] present a
monadic library implementation of effect handlers for Scala using implicit parameters and handler
passing. They show how programming with algebraic effects is an instance of the expression
problem and explore how shallow embedded handlers open up different dimensions of extensiblity.
One advantage of the shallow embedding is that it simplifies typing. We use dynamic dispatch

instead of implementing a pattern matching interpreter. This helps us to avoid advanced typing
features, such as type constructor polymorphism [Kiselyov et al. 2013] or generalized algebraic
data types [Kiselyov and Ishii 2015].
Combining OO with effect handlers, we define use as a method on Handler . As a method, it

naturally shares the type of the effect domain with its implementing class. Others require path
dependent types for the same purpose [Brachthäuser and Schuster 2017]. In contrast, Effekt as
presented in this paper is designed to remove requirements on the type system and to blend in
with Java programming paradigms. The bytecode instrumentation and the Stateful interface both
enable the direct use of mutable state and effect signatures are modeled by simple interfaces (as
compared to traits with type members and path dependent types in Scala Effekt).

Leijen [2017a] explicitly tags each effect operation in a handler with information about how the
continuation is used to implement important optimizations. Similarly explicit, in Effekt, handlers

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 111. Publication date: November 2018.

111:24 Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann

Table 1. Performance of bytecode instrumentation implementations. Runtime in ms, lower is better.

Time in ms (Confidence Interval)

Benchmark Baseline Effekt Effektopt Coroutines Quasar JavaFlow

Stateloop 1M 1.61 ±0.09 29.76 ±2.57 1.91 ±0.04 5.52 ±0.35 69.02 ±2.59 14.82 ±0.48

RecursiveOnce 1K 0.01 ±0.0 0.69 ±0.22 0.34 ±0.01 0.07 ±0.0 0.23 ±0.03 8.18 ±0.19

RecursiveMany 1K 0.01 ±0.0 1.05 ±0.38 0.4 ±0.07 10.29 ±1.41 68.07 ±2.07 3363.74 ±23.46

Skynet 1M 2.74 ±0.03 171.34 ±5.55 62.13 ±3.87 35.19 ±2.51 762.1 ±155.95 1277.51 ±54.18

SkynetSuspend 1M 2.74 ±0.03 414.56 ±9.2 147.4 ±5.44 50.46 ±2.95 1113.15 ±112.78 7198.72 ±122.56

capture the continuation with use . Tail resumptive handlers don’t need to capture the continuation
and don’t call use .

In other libraries and languages for effect handlers, an effect operation implicitly resolves to the
dynamically closest handler implementation. In contrast, we require the user to explicitly select
the handler to use. This has the advantage that no confusion arises when multiple handlers for
the same effect are present and that we avoid any search for the correct handler implementation
in some kind of handler stack. Explicitly selecting which handler to use also avoids the problem
of effect encapsulation [Biernacki et al. 2017; Lindley 2018], that is, handlers accidentally handle
effects. The disadvantage is that explicit handler selection is more verbose and fragile to changes.

Due to our design decision of a shallow embedding of effect handlers, handlers in Effekt are deep
handlers [Kammar et al. 2013]. That is, all effect operations in the continuation captured by use
will automatically be handled recursively by the very same handler. However, if a shallow handler

semantics is required, it can be achieved by reifying the command-response trees of selected effect
operations. Similar to the conversion from shallow to deep embedding, a reifying effect handler
interprets a program of type R into a free-structure Free<R> [Kiselyov et al. 2013] which then can
be interpreted step-by-step. While this encoding is possible, it can lead to performance problems
and memory leaks.

6.3 Performance

We report on some preliminary performance results. Like the discussion, the evaluation of perfor-
mance is split into two parts: A part on the CPS transformation and a part on Effekt as a library
for programming with effect handlers. All benchmarks were executed on a 2.5 GHz Intel Core i7
with 16GB of memory using the ScalaMeter, a state of the art JVM benchmarking library.

We also show the performance results for a variant of Effekt that implements several opti-
mizations: Continuation frames are not materialized upfront, but only when needed. To avoid
push-pop-enter cycles, the initial entrypoint is not explicitly pushed but inlined. Only methods
that contain at least one non-tail effect call are instrumented. We refer to this variant as Effektopt.
The user programs using Effekt don’t need to be changed.

Performance of the Bytecode Instrumentation. We evaluate the performance of our CPS trans-
formation comparing with Quasar 0.7.9, a recently maintained fork of JavaFlow20 in version 2.2.1
and Java Coroutines in version 1.4.0. We also measure the overhead compared to a baseline that
does not capture continuations. All libraries perform some sort of bytecode transformation to
support capturing the continuation. Since each of the libraries targets a particular domain (corou-
tines / fibers), capturing the continuation also involves additional overhead specific to the target
application. Where possible, we reduced this overhead by disabling features ś focusing on the

20https://github.com/vsilaev/tascalate-javaflow

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 111. Publication date: November 2018.

https://github.com/vsilaev/tascalate-javaflow

Effect Handlers for the Masses 111:25

Table 2. Performance of effect libraries. Runtime in ms, lower is better.

Time in ms (Confidence Interval)

Benchmark Effekt Effektopt Scala Effekt Scala Eff

Countdown 10K 3.35 ±0.07 2.47 ±0.12 6.07 ±0.32 34.39 ±2.59

Countdown8 1K 1.31 ±0.39 1.77 ±0.1 2.31 ±0.12 36.92 ±3.0

NQueens (10) 19.5 ±0.38 16.09 ±0.19 40.95 ±0.54 49.89 ±2.17

continuation capturing aspect, only. The results of the measurements can be found in Table 1. To
assess the instrumentation overhead, the Stateloop benchmark counts down from one million to
zero, performing some computation work at each step but not capturing the continuation. We
can see that most of the overhead of creating continuation frames is eliminated in the alternative
Effektopt. Java Coroutines save the function local state in arrays before entering a potentially
suspending function call. This is unnecessary for the Stateloop benchmark, which does not suspend.
To measure performance of capturing the continuation, the RecursiveOnce and RecursiveMany
benchmarks also count down, but as recursive functions. For the first benchmark we suspend
the computation once before returning the result (at stack-depth 1,000); correspondingly, for the
second one we suspend once at every recursive call. Resuming continuations is linear in stack
depth for all implementations but the Effekt implementations. In consequence, for the other
implementations, RecursiveMany has a running time that is quadratic in N while it is linear for
Effekt and Effektopt. To measure performance of delimited continuations, the Skynet bench-

mark21 recursively spawns ten fibers until one million are created, performs some computation and
aggregates the results. Each fiber corresponds to one delimited continuation. The Skynet variant
never suspends, but just creates the fibers which immediately return. The SkynetSuspend variant
in contrast suspends each fiber once before returning, resulting in one million continuations to be
captured and resumed. Quasar and JavaFlow maintain one stack per delimited continuation / fiber
each pre-allocating memory to store the function state. JavaFlow additionally maintains one stack
per primitive type and copies the stack on every resumption. This leads to several million arrays
copies. The Coroutines library is optimized for one shot continuations and large parts of the library
are inlined in the generated bytecode. It also does not suffer from the linear stack restoration in the
Skynet benchmark since the stack size of each fiber on suspension is at most one.

Performance of the Effect Library. To evaluate the performance of the overall framework, we
compare Effekt with two other effect libraries. A monadic implementation of effect handlers in
Scala łScala Effektž22 and the effect library łScala Effž23 which is based on freer monads [Kiselyov
and Ishii 2015]. The results of the measurements can be found in Table 2. The CountDown8
benchmark layers eight state effects over one ambiguity effect and flips once before returning.
NQueens is an effect library benchmark from the literature [Kammar et al. 2013]. The benchmarks
show improvements of 2x compared to Scala Effekt and 2.5-28x compared to Scala Eff. We account
the biggest performance improvement to optimizing tail resumptive operations to just be dynamic
method calls. Other performance improvements compared to Scala Effekt are inlining the monadic
Scala code by bytecode instrumentation and only capturing the continuation on demand (Effektopt).

21https://github.com/atemerev/skynet
22http://b-studios.de/scala-effekt/
23http://atnos-org.github.io/eff/

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 111. Publication date: November 2018.

https://github.com/atemerev/skynet
http://b-studios.de/scala-effekt/
http://atnos-org.github.io/eff/

111:26 Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann

7 CONCLUSIONS

We presented the first library design for programming with effect handlers in Java. We showed
how such a library can be implemented in terms of a CPS transformation and multi-prompt
delimited continuations. Our CPS transformation allows trampolining, multiple resumptions and is
competitive in its performance.

ACKNOWLEDGMENTS

We would like to thank Aleksandar Prokopec and Daan Leijen for inspiring discussions that helped
us to improve the design and implementation of Effekt. We are also very grateful for the valuable
feedback by Sam Lindley and the anonymous reviewers. This work was supported by DFG project
OS 293/3-1.

REFERENCES

Andrej Bauer and Matija Pretnar. 2013. An effect system for algebraic effects and handlers. In International Conference on

Algebra and Coalgebra in Computer Science. Springer, 1ś16.

Andrej Bauer and Matija Pretnar. 2015. Programming with algebraic effects and handlers. Journal of Logical and Algebraic

Methods in Programming 84, 1 (2015), 108ś123.

Gavin Bierman, Claudio Russo, Geoffrey Mainland, Erik Meijer, and Mads Torgersen. 2012. Pause’n’Play: Formalizing

Asynchronous C#. In Proceedings of the European Conference on Object-Oriented Programming. Springer-Verlag, 233ś257.

Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. 2017. Handle with Care: Relational Interpretation of

Algebraic Effects and Handlers. In Proceedings of the Symposium on Principles of Programming Languages. ACM.

Jonathan Immanuel Brachthäuser and Philipp Schuster. 2017. Effekt: Extensible Algebraic Effects in Scala (Short Paper). In

Proceedings of the International Symposium on Scala. ACM.

Edwin Brady. 2013. Programming and Reasoning with Algebraic Effects and Dependent Types. In Proceedings of the

International Conference on Functional Programming. ACM, 133ś144.

Jacques Carette, Oleg Kiselyov, and Chung-Chieh Shan. 2007. Finally Tagless, Partially Evaluated. In Proceedings of the

Asian Symposium on Programming Languages and Systems. Springer LNCS 4807, 222ś238.

Melvin E Conway. 1963. Design of a separable transition-diagram compiler. Commun. ACM 6, 7 (1963).

Stephen Dolan, Spiros Eliopoulos, Daniel Hillerström, Anil Madhavapeddy, KC Sivaramakrishnan, and Leo White. 2017.

Concurrent system programming with effect handlers. In Proceedings of the Symposium on Trends in Functional Program-

ming.

Stephen Dolan, Leo White, KC Sivaramakrishnan, Jeremy Yallop, and Anil Madhavapeddy. 2015. Effective concurrency

through algebraic effects. In OCaml Workshop.

Iulian Dragos, Antonio Cunei, and Jan Vitek. 2007. Continuations in the Java virtual machine. In Second ECOOP Workshop

on Implementation, Compilation, Optimization of Object-Oriented Languages, Programs and Systems (ICOOOLPS 2007).

Technische Universität Berlin.

R Kent Dyvbig, Simon Peyton Jones, and Amr Sabry. 2007. A monadic framework for delimited continuations. Journal of

Functional Programming 17, 6 (2007), 687ś730.

Michael Eichberg and Ben Hermann. 2014. A Software Product Line for Static Analyses: The OPAL Framework. In Proceedings

of the 3rd ACM SIGPLAN International Workshop on the State of the Art in Java Program Analysis (SOAP ’14). ACM.

Steven E. Ganz, Daniel P. Friedman, and Mitchell Wand. 1999. Trampolined Style. In Proceedings of the International

Conference on Functional Programming. ACM, 18ś27.

R. Hieb and R. Kent Dybvig. 1990. Continuations and Concurrency. In Proceedings of the Second ACM SIGPLAN Symposium

on Principles & Practice of Parallel Programming (PPOPP ’90). ACM, 128ś136.

Daniel Hillerström, Sam Lindley, Bob Atkey, and KC Sivaramakrishnan. 2017. Continuation Passing Style for Effect Handlers.

In Formal Structures for Computation and Deduction (LIPIcs), Vol. 84. Schloss DagstuhlśLeibniz-Zentrum für Informatik.

Paul Hudak. 1998. Modular Domain Specific Languages and Tools. In Proceedings of the Conference on Software Reuse. IEEE

Computer Society Press, 134ś142.

Ohad Kammar, Sam Lindley, and Nicolas Oury. 2013. Handlers in Action. In Proceedings of the International Conference on

Functional Programming. ACM, 145ś158.

Oleg Kiselyov and Hiromi Ishii. 2015. Freer Monads, More Extensible Effects. In Proceedings of the Haskell Symposium. ACM,

94ś105.

Oleg Kiselyov, Amr Sabry, and Cameron Swords. 2013. Extensible Effects: An Alternative to Monad Transformers. In

Proceedings of the Haskell Symposium. ACM, 59ś70.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 111. Publication date: November 2018.

Effect Handlers for the Masses 111:27

Oleg Kiselyov and KC Sivaramakrishnan. 2016. Eff directly in OCaml. In ML Workshop.

Daan Leijen. 2014. Koka: Programmingwith Row Polymorphic Effect Types. In Proceedings of theWorkshop onMathematically

Structured Functional Programming.

Daan Leijen. 2016. Algebraic Effects for Functional Programming. Technical Report. MSR-TR-2016-29. Microsoft Research

technical report.

Daan Leijen. 2017a. Implementing Algebraic Effects in C. In Proceedings of the Asian Symposium on Programming Languages

and Systems. Springer International Publishing, Cham, Switzerland, 339ś363.

Daan Leijen. 2017b. Structured Asynchrony with Algebraic Effects. In Proceedings of the Workshop on Type-Driven Develop-

ment. ACM, 16ś29.

Daan Leijen. 2017c. Type directed compilation of row-typed algebraic effects. In Proceedings of the Symposium on Principles

of Programming Languages. 486ś499.

Sam Lindley. 2018. Encapsulating effects, In Algebraic Effect Handlers go Mainstream (Dagstuhl Seminar 18172). Dagstuhl

Reports 8, 4.

Sam Lindley, Conor McBride, and Craig McLaughlin. 2017. Do Be Do Be Do. In Proceedings of the Symposium on Principles

of Programming Languages. ACM, 500ś514.

Florian Loitsch. 2007. Exceptional continuations in JavaScript. In Workshop on Scheme and Functional Programming.

Bruno C. d. S. Oliveira and William R. Cook. 2012. Extensibility for the Masses: Practical Extensibility with Object Algebras.

In Proceedings of the European Conference on Object-Oriented Programming. Springer LNCS 7313, 2ś27.

Greg Pettyjohn, John Clements, Joe Marshall, Shriram Krishnamurthi, and Matthias Felleisen. 2005. Continuations from

Generalized Stack Inspection. In Proceedings of the International Conference on Functional Programming. ACM, 216ś227.

Gordon Plotkin and John Power. 2003. Algebraic operations and generic effects. Applied Categorical Structures 11, 1 (2003),

69ś94.

Gordon Plotkin and Matija Pretnar. 2009. Handlers of algebraic effects. In European Symposium on Programming. Springer-

Verlag, 80ś94.

Joe Gibbs Politz, Alejandro Martinez, MatthewMilano, SumnerWarren, Daniel Patterson, Junsong Li, Anand Chitipothu, and

Shriram Krishnamurthi. 2013. Python: The Full Monty. In Proceedings of the Conference on Object-Oriented Programming,

Systems, Languages and Applications. ACM, 217ś232.

Ron Pressler. 2017. Loom Project: Fibers and Continuations for the Java Virtual Machine. OpenJDK Project. HotSpot Group.

http://mail.openjdk.java.net/pipermail/discuss/2017-September/004390.html

Aleksandar Prokopec and Fengyun Liu. 2018. Theory and practice of coroutines with snapshots. In Proceedings of the

European Conference on Object-Oriented Programming. Schloss DagstuhlśLeibniz-Zentrum für Informatik.

John C. Reynolds. 1972. Definitional Interpreters for Higher-Order Programming Languages. In Proceedings of the ACM

annual conference. ACM, 717ś740.

Tatsurou Sekiguchi, Takahiro Sakamoto, and Akinori Yonezawa. 2001. Advances in Exception Handling Techniques.

Springer-Verlag, Heidelberg, Berlin, Germany, Chapter Portable Implementation of Continuation Operators in Imperative

Languages by Exception Handling, 217ś233.

Lukas Stadler, Christian Wimmer, Thomas Würthinger, Hanspeter Mössenböck, and John Rose. 2009. Lazy continuations

for Java virtual machines. In Proceedings of the International Conference on Principles and Practice of Programming in Java.

ACM, 143ś152.

Nicolas Wu and Tom Schrijvers. 2015. Fusion for Free - Efficient Algebraic Effect Handlers. In Proceedings of the Conference

on Mathematics of Program Construction. Springer LNCS 9129.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 111. Publication date: November 2018.

http://mail.openjdk.java.net/pipermail/discuss/2017-September/004390.html

	Abstract
	1 Introduction
	1.1 Overview

	2 Programming with Effect Handlers in Effekt
	2.1 Handling Effects
	2.2 Implementing Effect Handlers
	2.3 Design of the Effekt Library

	3 Implementing an Effect Handler Library in Java in three Steps
	3.1 Type Selective CPS Transformation by Example
	3.2 Delimited Continuations
	3.3 Implementation of the Effekt Library

	4 Use Cases
	4.1 Handling Multiple Effects in one Handler
	4.2 Alternatives to Handler Passing
	4.3 Ambient State and Parametrized Handlers
	4.4 Case Study: Parsing
	4.5 Case Study: Generators and Coroutines
	4.6 Case Study: Cooperative Multitasking

	5 Implementation of the Type Selective CPS Transformation
	5.1 Translation of Methods
	5.2 Saving Function Local State
	5.3 Translation of Instructions

	6 Discussion and Related Work
	6.1 Continuations on the Java Virtual Machine
	6.2 Relation to other (Algebraic) Effect Handler Libraries and Languages
	6.3 Performance

	7 Conclusions
	Acknowledgments
	References

